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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.GangadharaRao 
M.Tech.,Ph.D., 

Vice-Chancellor I/c 
Acharya Nagarjuna University 
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MODEL QUESTION PAPER  

Time : Three hours              Maximum : 70 marks 
 
Answer ONE question from each Unit.                                                        (5 x 14 = 70) 

 
UNIT - I 

 

1. (a) State and prove Lagrange’s theorem on groups. 
         (b) If G is a group and H,K are two subgroups of G then show that HK is  
               a subgroup of G if and only if HK = KH 

OR 

2. (a) Let G be any group, g is a fixed element of G. Define ϕ: G→G by ϕ(x)  
              = gxg-1. Then prove that ϕ is an isomorphism of G onto itself. 
          (b) State and prove Cauchy’s theorem for abelian groups. 

 

UNIT – II 
 

3. (a) State and prove Caylay’s theorem. 
         (b) If O(G) = p2 where p is a prime number then prove that G is abelian. 

OR 

4. (a) If O(G) = pn; where p is a prime number, then prove that Z(G) ≠ ( e ). 
         (b) If p is a prime number and p│O(G) then prove that G has an element of  
              order p. 

 

UNIT – III 
 

5. (a) Let G be a group and suppose that G is the internal direct product of     
              N1 , N2 , …, Nn. Let T = N1 x N2 x …x Nn. Then prove that G and T are  
              isomorphic. 
          (b) If G and G' are isomorphic abelian groups, then prove that for every  
                integer s, G(s) and G'(s) are isomorphic. 

OR 

6. (a) Prove that a finite integral domain is a field. 
          (b) If U and V are ideals of R, let U+V = {u + v/ u ∈ U, v ∈ V} then  
                prove that U+V is also an ideal of R. 

 
 



UNIT – IV 
 

7. (a) If R is a commutative ring with unit element and M is an ideal of R, the  
              M is a maximal ideal of R if and only if R/M is a field. 
        (b) If f(x) and g(x) are primitive polynomials then prove that f(x)g(x) is  
             also a primitive polynomial. 

OR 

8. (a) Let R be a Euclidean ring and a, b ∈ R. If b ≠ 0 is not a unit in R then prove that     
              d(a) < d(ab). 
        (b) State and prove Gauss lemma. 
 

UNIT – V 
 

9. (a) If R is a unique factorization domain then prove that R[x] is also a unique  
              factorization domain. 
        (b) If V is a finite dimensional vector space and W is a subspace of V, then prove that  
             W is finite dimensional, dim W ≤ dim V and dim(V/W) ≤ dim V – dim W. 

OR 

10.  (a) Prove that if V is a finite dimensional vector space over F then any two bases of V  
               have the same number of elements. 
         (b) Prove that if V and W are finite dimensional vector spaces of dimensions m and n  
              respectively over F then Hom (V,W) is of dimension mn over F. 
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LESSON – 0 

PRELIMINARIES 
OBJECTIVES: 

The objectives of this lesson are to 

 define the concept of a group and give certain examples. 

 state and prove the Lagrange’s theorem on subgroups of a finite group. 

 define the cyclic group and their generators and give some examples of cy clic groups. 

STRUCTURE :  

0.1 Introduction 

0.2 Groups 

0.3 Subgroups 

0.4 Legrange’s Theorem 

0.5 Cyclic groups 

0.6  Model examination questions 

0.7  Summary 

0.8  Technical terms 

0.9  Answers to self assessment questions  

0.10 Suggested Readings 

 0.1: INTRODUCTION: 

In this lesson we study one of the most important algebraic concepts that of a group. 

A group is a nonempty set on which a law of composition is defined   such that all elements 

have inverses. For example the set of all non-zero real numbers forms a group under 

multiplication and the set all real members forms a group under addition. The set of all 

invertible n x n matrices of real numbers is an important example in which the law of 

composition is matrix multiplication. Thus the concept of a group and the axioms which 

define it have a naturality about them. 

0.2. GROUPS: 

Let A and B be any two sets. Then A x B = {(a, b) / a  A, b  B} is called the cartesian product 

of A and B. For example, 

Let A = {a
1
, a

2
, a

3
} B = {b

1
, b

2
} then 

A x B = {(a
1
, b

1
), (a

2
, b

1
), (a

3
, b

1
), (a

1
, b

2
), (a

2
, b

2
), (a

3
, b

2
)} 

Also that A x  =  =  x B.  
Any subset of A x B is called a (binary) relation from A to B. For example, Let R = {(a

1
, b

1
), 

(a
2
, b

1
), (a

1
, b

2
)}. Then R is a relation from A to B. Any relation from A to itself is called a 

relation on A. 

A relation R on A, where A is a non-empty set, is called an equivalence relation on A if R 

satisfies 

1. reflexive : (aa) R  a 

2. symmetric: ab Rb a R 

3. transitive : a b R and  bc R a c R 

If R is an equivalence relation on A and (a, b)  R, we say that a is equivalent to b under R and 

write a ~ b or aRb: in this notation (1)-(3) become 
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a ~ a 

a ~ b  b ~ a 

a ~ b and b ~ c  a ~ c 

Let R( ~ ) be an equivalence relation on A. If a A, the equivalence class of a (denoted  ) is 

the class of all those elements of A that are equivalent to a; that is,  b  A  / b ~ a . Note 

that any two equivalent classes are either identical or disjoint. Also note that for any aA,   

 since a ~ a. Also it is easy to verify that A = . 

For any non empty set A, a mapping f: A x A A is called a binary operation on A. 

That is, for any two elements a and b in A, there is a unique element associated in A and that 

unique element will be denoted by f(a, b) or afb. Usually binary operations will be denoted by 

symbols like +, •,  ,  , etc. If we say that  is a binary operation on A, this means that, for any 

element a and b, in this order, in A, there is another element denoted by a  b in A. For 

example The usual addition ‘+’ and multiplication ‘•’ on the set Z of integers, are binary 

operations on Z The composition ‘’ of mappings on the set of mappings of a given set into 

itself, the set intersection or the set union on the set of subsets of a given set are familiar 

examples of binary operations. 

0.2.1. Definition: A system (A, ), where A is a non empty set and  is a binary                              

operation on A, is called a semigroup if a (b c) = (a b)  c for all a, b, c A (associative 

law). 

The set  of real numbers with usual addition ‘+’ is a semigroup and with usual 

multiplication ‘’ is a semigroup. But  with the binary operation defined by a  b = a – b is not a 

semigroup. (Since 2–(3–1)  (2–3)–1. i.e,  is not associative) 

0.2.2. Definition: Let (A, ) be a semigroup. An element e in A is called an identity 

element if a   e = a = e   a for all a A.   

If a e = a for all aA, then e is called a right identity and if e a = a for all  a A, then e 

is called a left identity. If e is a right identity and e1 is a left identity in a semigroup (A, ), 

then eǀ = eǀ   e = e. 

Therefore, it follows that a semigroup can have atmost one identity. A semigroup 

having identity is called a monoid. The real number 0 is the identity in ( , +) and the real 

number 1 is the identity in (  ,   ). If + denote the set of  all positive real numbers, then ( +, +) 

is a semigroup without identity. So (  , +)            and ( ,   ) are monoids but ( +, +) is not a monoid. 

0.2.3. Definition: Let (A, ) be a semigroup with identity e. An element a in A is said                      

                                                 to be invertible if there exists an element b in A such that a b = e = b a. 

If a b = e, then b is called a right inverse of a.  If b a = e, then b is called a left inverse of a. 

If b is a right inverse of a and b1 is a left inverse of the same element a that   is, (a b =e 

and b1 a=e), then b = e b = (b1 a) b = b1  (a b) = b1 e = b1. there exists unique b such 

that a b = e = b a = b1 and hence a is invertible. This implies that if a is invertible, there 

exists unique b such that a b = e = b a and this unique b is called the inverse of a and is 

denoted by a–1. For example, in the semigroup ( , +), every element is invertible (for any a ,  

–a is the inverse of a). In the semigroup ( ,  ), 0 is not invertible and every non-zero element is 
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invertible. In the semigroup ( +  {0}, +), the identity element 0 is the only invertible 

element. Note that the identity element if it exists, in any semigroup is invertible. 

 

0.2.4. Definition: A system (A, ), where A is a non empty set and  is a binary                

         operation on A is called a group if it satisfies the following : 

(i)  a  (b c) = (a b)  c for all a, b, c A. 

(ii)  There exists e A such that a  e = a = e a for all a A. 

(iii)  To each a A, there exists a–1 A such that a  a–1 = e = a–1  a. 

0.2.5. Examples: 

(i) (  , +), ( , +) and ( , +) are all groups, where + is the usual addition on the set  of real 

numbers, on the set  of rational numbers and on the set  of integers. 

(ii) ( , ) is not a group, since 0 is not invertible. But if ǀ is the set of nonzero real numbers, 

then ( ǀ, ) is a group. 

(iii) Let X be any set and S(X) be the set of all bijections of X onto itself. Then (S(x),    ) is a 

group, where  is the composition of mappings. 

(iv) For any set X, let M(X) be the set of all mappings of X into itself. Then (M(X), ) is a 

semigroup with identity (where the identity mapping is the identity element), but not a group 

(unless X is a single element set). An element f M(X) has a right inverse if and only if f is a 

surjection(that is, onto map) and f has a left inverse if and only if f is an injection(that is 

one-one map). 

(v) Let A be the set of all 2 x 2 matrices over the real numbers. Then (A, +) is a group, 

where + is the usual addition of matrices. If A is the set of all non-singular     matrices, then (Aǀ,   ) 

is a group, where  is the usual multiplication of matrices. 

(vi) Let n be any positive integer and Z
n = {0, 1, 2, . . . . ., n-1}. Define 

a +n b =  

Then (Z
n
, +

n
) is a subgroup, which is called the additive group of integers modulo n. 

0.2.6. Theorem (Cancellation Laws): Let (G, ) be a group and a, b, c G. Then   

                                                                                                                                                                                                                                           a b = a  c  b = c and b  a = c  a   b = c 

Proof: Since aG and G is a group, a-1 exists in G.  

Consider a  b = a  c  a -1  (a  b) = a -1  (a c) 

 (a–1  a)  b = (a–1  a) c  e  b = e  c, where e is the identity element in G. 

 b = c 

Similarly, by applying a–1 from right, we get that b  a = c  a  b = c. 

The following two results are easy to prove and are left as exercises. 

0.2.7. Theorem: Let (G,  ) be a group. Then the following are true. 

(i) The identity element in G is unique. 

(ii)  For any a G, the inverse of a in G is unique. 
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0.2.8. Theorem: Let (G, ) be a group and a, b G. Then the following hold. 

(1) (a-1)-1 = a 

(2) (ab)-1 = b-1a-1 

(3) a x = b has a unique solution in G. 

(That is, there exists unique x G such that a  x = b) 

(4) y  a = b has a unique solution in G. 

(5) a  b = e  b = a–1  a = b–1 

(6) a  a = a  a = e. 

0.2.9. Definition: A group (G, ) is said to be an abelian (commutative) group if    a  b 

= b  a for all a, b G. 

Examples: (1) ( , +), (Q, +) and ( , +) are abelian groups where + is the usual addition on 

the set  of real numbers, on the set of Q of rational numbers and on the set  if integers. 

(2) Let A be the set of all 2 x 2 non – singular matrices over the real numbers. Then (A,  ) is a 

non abelian group, where  is the usual multiplication of matrices. 

 0.3. SUBGROUPS: 

If (G, ) is a group and a, bG, then we simply write ab for a b. For simplicity, we 

supress the symbol  which denotes the binary operation. Accordingly we simply say that G 

is a group, when there is no amiguility about the   binary operation with which G is a group. If 

G is a group with respect to more than one binary operation then we mention the operation 

also. 

     0.3.1. Definition: Let G be a group. A nonempty subset H of G is called a subgroup of G if 

   H is a group relative to the binary operation in G. 

For any group G the singleton {e} and G itself are subgroups of G, called trivial 

subgroups. A subgroup H of G is said to be a proper subgroup if H  {e},  H  G. It is easy to 

see that the identity element of a subgroup of a group must be same as that of the group. 

0.3.2. Theorem: Let G be a group. A non empty subset H of G is a subgroup of G if and   only 

if for any a, b H, ab H and a-1 H. 

Proof: Let H be a nonempty subset of G. If H is a subgroup of G, then obviously       the implies 

condition is true. Conversely suppose that H satisfies for any a, b H,   ab H and a-1 H. 

Then for any a H, a-1 H. Hence, e = aa-1 H  e H. 

Therefore H is a subgroup. Hence the result is true. 

0.3.3. Theorem: Let G be a group. A nonempty subset H of G is a subgroup of G if and   only if 

for any a, b H, ab-1 H. 

Proof: Let H be a non empty subset of G. If H is a subgroup of G, then obviously the implies 

condition is true. Conversely suppose that for any a, b H, ab-1 H. Let a, b H. Then by 

our supposition, e = bb-1 H. Hence b–1 = ab–1 H. Therefore, ab = a(b–1)–1 H. Hence H is 

a subgroup of G. 
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0.3.4. Theorem: Let H be a non-empty finite subset of a group G. Then H is a subgroup of 

G if and only if ab H for all a, b H. 

 Proof: Given that H is a non-empty finite subset of G. So write H = {a
1
, a

2 
,…, a

n
} for 

some positive integer n. Suppose H is a subgroup of G. Now we will show that for 
any a, b H, ab H. 

Let a, b H. Then aa-1 H, a H and b H. 

 e H, a H and b H. 

 b-1 = eb-1 H and a H. 

 ab = a(b-1)-1 H. 

So for any a, b H, we have ab H. 

Conversely suppose that ab H for any a, b H. Consider the set Ha
1 = {a

i
a

1 
/ 1  i    

n}. By hypothesis, Ha
1 is a subset of H having the same number of elements as in H (for a

i
a

1 = 

a
j
a

1  a
i = a

j by 0.2.6). Therefore Ha
1 = H and hence a1H = Ha1; that is a1 = aia1 for some 

i. Now ea1= a1 = aia1 and hence e = ai H = Ha1, which again imples that e = aj ai and hence 

a1
1 = aj H. Similarly ai

1 H for 2  i    n 
 
 therefore a–1  H whenever a  H. Now e  H 

and for any a  H, we have a–1  H. Hence H is a subgroup of G. 

   The above theorem fails if H is infinite. For the set Z+ of positive integers  is a subset 

of the group (Z, +) satisfying the property that a + ba-1 Z+ for a, b Z+; but Z+ is not a 

subgroup of (Z, +). 

0.3.5. Theorem: Let G be a group. Then the intersection of any family of subgroups of     G is 

again a subgroup of G. The union of a family of subgroups of G may not be     a subgroup of G.                                                                                                                   

Proof: It is easy to verify that the intersection of any family of subgroups is again a 

subgroup. Regarding unions consider 

2Z = {2a / a Z} and 3Z = {3a / a Z} 

Then 2Z and 3Z are subgroups of the group (Z, +).But 3, 2 2Z  3Z and  3 – 2 2Z 3Z. 

0.3.6. Self assessment Questions: 

Let H and K be a subgroup of a group G. Then prove that 

1. HK  is a subgroup of G if and only if either H  K or K  H. 

2. The product HK = {ab / aH and bK} is a subgroup of G if and only if  HK = 

KH. 

0.3.7. Definition: Let G be a group and X be a subset of G. Then the intersection of all   

subgroups of G containing X is the smallest subgroup of G containing X and is       denoted by 

<X>. If X consists only one element say a, then we write <a > for <{a}>. <X> is called 

the subgroup generated by X : a is called a genera tor for < a > and X is called generating set 

for < X >. 

0.3.8. Theorem (1): For any nonempty subset X of a group G, 

< X > = {a1. a2........ an / for each i ; either ai X or  a i
1X; n  ≥1} 

(2) For any element a of a group G, < a > = {an / nZ} where an is defined inductively by 



Center for Distance Education  0.6   Acharya Nagarjuna University 

an =  

Proof: (1) Let A = { a1. a2........ an / for each i ; either ai X or  X; n ≥  1} 

It can be easily observed that xyA whenever x, y A. 

Also (a1. a2........ an)-1 =  . . . . . . Therefore A is a subgroup of G 

Clearly X  A and if H is any subgroup of G such that X  H, then A  H. Thus  A is the smallest 

subgroup of G containing X and hence A = <X>. 

(2) This follows from (1) and the definition of an for any n Z. 

For x  a>  x = a1 a2........ an, where for each i, ai a} or  {a}. 

                    x =  ,  ,........,  where each i  = ± 1. 

                    x = , where m  = 1 + 2 + ............. + n  Z . 

0.4. LAGRANGE’S THEOREM: 

 In this section, we shall prove one of the most useful theorem due to Lagrange. If G is 

a finite group, then the number of elements in G is called the order of G and is denoted by 

O(G). The Lagrange’s theorem states that, if H is a subgroup of a finite group G, then the 

order of H divides the order of G. Before going to the proof of this, first let us have the 

following. 

0.4.1. Definition: Let H be a subgroup of a group G. For any a G, let aH = {ah / h H} and 

Ha ={ha / h H} 

aH is called the left coset of H corresponding to a in G and H is called the right     coset of H 

corresponding to a in G. 

0.4.2. Theorem: Let H be a subgroup of a group G. Then any two left (right) cosets of    H in 

G are either equal or disjoint. If H is finite, then the number of elements in a left (right) 

coset of H is equal to O(H). 

Proof: Let a, bG. Suppose aHbH    . Choose xaH bH. Then ah1 = x = bh2 for     some h1, 

h2 H. 

Then a–1b = h1 h2
1 H. Now y aH  y = ah  for some h H. 

 y = b(b–1a)h bH   

This shows that aH   bH. 

Now y bH  y = bH for some h H. 

 y = a(a-1b)h aH. 

This shows that bH   aH. 

Thus aH = bH. That is, if aH and bH are not disjoint, then aH = bH. On the same  lines, we 

can prove that Ha and Hb are either equal or disjoint. The mapping h →  ah is a bijection of 

H onto aH and therefore when H is finite, aH is also finite and hence H and aH have the 

same number of elements. Similarly we can prove  the theorem for right cosets also. 

0.4.3. Theorem(Lagrange’s theorem): Let H be a subgroup of a finite group G. Then  

O(H) divides O(G). 
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Proof: Each element a G is in the corresponding left coset aH (Since a = at e aH).   

Therefore by theorem 0.4.2, the left cosets aH form a partition of G. That is any two left 

cosets of H in G are equal or disjoint and G =    Since G is finite, the number of left 

cosets of H in G is finite. So let a
1
H, a

2
H, ...., a

n
H be all the distinct left cosets of H in G. 

Then G = a
1
H  a

2
H   a

n
H and (a

i
H)  (aj H)   for i  j. 

Therefore, O(G) =  =   = n(OH), since |  | = O(H). Thus O(H) divides 

O(G) and   = n, the number of left cosets of H in G. 

0.4.4. Corollary: If H is a subgroup of a finite group G, then the number of left cosets of H 

in G is equal to the number of right cosets of H in G and this number is equal to . 

Proof: In the proof of 0.4.3, n is the number of left cosets of H in G and n =  . The same 

argument is valid, if we consider right cosets. 

0.4.5. Definition: Let H be a subgroup of a group G. Then the index of H in G is defined   as 

the number of left(right) cosets of H in G and is denoted by [G:H] or i
G
(H) if it is finite. If G 

is a finite group, then                   [G:H] = . 

This definition may be extended to infinite groups. Let H be a subgroup of      a group G (finite or 

infinite). If  is the set of distinct right cosets of H in G, and L is the set of distinct left cosets of 

H in G, then the cardinal number  of the set  is equal to the cardinal number  of the set 

; i.e, |  | = , for the map    given by Ha a-1H is a bijection since Ha = Hb 

 ab-1 H  (a-1)-1b-1 H  a-1H = b-1H. 

The index of H in G, denoted by [G : H] is the cardinal number of the set of distinct left 

cosets of H in G. It is true that  = [G:H] . The index of H in G may be finite with 

out G or H being finite. For, consider the group (Z, +) of integers. Let n be a positive 

integer and H = nZ = {na / aZ}. Then it is easy to verify that H, 1+H, 2+H, ....., (n–1)+H 

are all the distinct left cosets of H and hence H is of index n in Z. 

0.4.6. Self Assessment question: Let X = {1, 2, 3}. Let S
3 be the group of all bijections on 

X; with the binary operation composition of mappings. Define : X  X as  (1) = 2,  (2) 

= 1,  (3) = 3. Then    = I, where I is the identity mapping on X. Prove that H = {I, } 

is a subgroup S3. Compute all the left and right cosets of H in G and observe that, though 

their number is the same, they are different. 

0.4.7. Theorem: Let H be a subgroup of a group G. For any a, bG, define a relation by a ~ b 

 a-1b H. Then ~ is an equivalence relation on G whose equivalence classes are precisely the 

left cosets of H in G. 

Proof: Since H is a subgroup of G, H should contain the identity element of G. For any        a G, 

we have a-1a = e and hence a ~ a. Therefore ~ is reflexive. 

a ~ b  a-1b H  b-1a = (a-1b)-1 H  b ~ a. Therefore ~ is symmetric.   

Also a ~ b and b ~ c  a-1b and b-1c H 

 a-1c = (a-1b)(b-1c)H  a ~ c 
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hence ~ is transitive. Thus ~ is an equivalence relation on G. Further, for any a G, 

a ~ b  a-1b H  b aH 

Hence aH is the equivalence class containing a with respect to the relation ~ . 

0.4.8. Self assessment question: For any subgroup H of a group G, define a relation ~ on 

G by a ~ b  ab-1H.  

Prove that ~ is an equivalence relation on G whose equivalence classes are precisely the 

right cosets of H in G. 

0.5. CYCLIC GROUPS: 

For any element a in group G , we have constructed the subgroup < a >  generated by 

a in G (see 0.3.6). < a > is called a cyclic subgroup of G. 

0.5.1.Definition: A group G is called a cyclic group if there exists aG such that                            

G = < a > = {an / n Z}. 

In this case, G is said to be generated by a and a is called a generator of G. If + is  the binary 

operation on a group, it is conventional to write na for an: that is 

na =  

0.5.2. Examples: 

(1) The group (Z, +) of integers is cyclic group, Since Z = < 1 > = < -1 >. Hence  both 1 and -1 

are generators for this cyclic group. 

(2) For any positive integer n, consider the additive group Zn of integers modulo n (see 0.2.5 

(vi)). Recall that Zn
 
= { 0, 1 ,2,……., n-1}.  

Here the operation is addition modulo n, denoted by +n. Note that 1 +n 1 = 2, 2 +n 1 = 3, 

.................., (n-2)  +n 1 = n-1 and (n-1) +n 1 = 0, 0 +n 1 = 1,..........  

By adding 1 to each element 0  a < n–1 in Zn, we are getting the next element a +n 1 in Zn and 

by adding 1 to n-1 we get 0. This is the lesson for calling it a cyclic group. Zn is a cyclic 

group generated by 1 whose order is n 

0.5.3. Theorem: Let G be an infinite cyclic group. Then the following hold. 

1) xn = e  x = e or n = 0, for any x G. 

2) For any x G, xn  = xm  n = m or x = e. 

3) There are exactly two generators for G. 

Proof: Since G is a cyclic group, there exists aG such that G = < a > = { an / n Z}. 

We shall first prove that an  e for all n  0. If possible suppose that an = e for some   n  0.We can 

assume that n is positive (Since an = e if and only if a-n = e). Then by  the division algorithm any 

integer m can be written as m = nq + r for some q, r Z write 0   r < n and hence am = anq+r = 

anq.ar = (an)q.(ar) = eq.ar = ar. 

This imples that G = {ar / 0  r < n} which is a contradiction for the hypothesis that G is infinite. 

Thus an   e for all n   0. 

(1) If x = e or n = 0, then clearly xn = e. 
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Conversely, suppose x G and xn = e. We can write x = am for some m Z. Now amn = xn = 

e and hence, by the above observation, mn = 0 so that m= 0 or n = 0.Therefore x = e or n = 0. 

(2) This follows from (1) and from the fact that xn = xm if and only if xn-m = e. 

(3) We have that a is a generator of G. Suppose b is another generator of G. Then < a > = G = 

< b >. 

So that a = bn and b = am for some integers m and n. Then a1 = a = bn = (am)n = amn     

and therefore by(2), mn = 1 which implies that m = 1 = n or m = –1 = n. 

From this it follows that m = 1 or -1 and hence b = a or b = a-1.Thus a and a-1 are      the only 

generators of G. Also, note that a  a-1 and < a > = < a-1 >. Thus G has exactly two generators. 

0.5.4. Theorem: Let G be a finite cyclic group of order n > 1. Then the following hold. 

(1) If a is a generator of G, then G = {e, a, a2,……, an-1} and n is the least positive integer such 

that an = e. 

(2) For any generator a of G and for any integer m, am = e   n divides m. 

(3) The number of generators of G is equal to n, the number of positive integers less than n 

and relatively prime to n.      

Proof: (1) Let a be a generator of G. Then a   e (Since O(G) > 1) and G = < a > = {am / 

mZ}. 

Since G is finite and Z is infinite, we should have am = at for some m < t. Then at–m = e and t–

m is a positive integer. Let s be the smallest positive integer such     that as = e. Then ai  aj for all 0 

 i  j    s–1 and G = {e, a, a2, ........., as–1} (See the discussion in the beginning of the proof of 

0.5.3). Since O(G) = n, it follows that s = n and G = {e, a, a2, ........., an–1}. 

(2) Let a be a generator of G. Then by(1), an = e and hence (an)q = e for all integers q. This 

implies that am = e whenever n divides m. On the other hand, sup pose am = e. Then by the 

division algorithm, m can be written as nq + r for some q, r Z with 0  r < n. Now e = am = 

anq+r = (an)qar = ar. Since n is the last positive integer such that an = e and since ar = e and 0  r  < 

n, it follows that r = 0 and m = nq. Thus n divides m. 

(3) We shall prove that for any 0 < r < n, ar is a generator of G if and only if r is relatively 

prime to n. 

Let 0 < r < n. Suppose ar is a generator of G. Then < ar > = G = < a >. 

Hence a = (ar)s for some integer s, so that ars-1 = e. By (2) n divides rs-1 and therefore nt = rs 

–1 for some integer t so that rs – nt = 1. From this it follows that r and n are relatively prime. 

Conversely, suppose that r and n are relatively prime. Then there exist integers s and t such 

that rs – nt = 1 and hence a = ars – nt = (ar)s(an)-t = (ar)s which implies that a < ar >. 

Therefore < a >  < ar >  G = < a > and hence G = < ar >. So that ar is a generator of G. Also note 

that ar  as for any 0 < r, s < n. Thus the number of generators of G   is equal to the number of 

positive integers less than n and relatively prime to n. 

0.5.5. Definition: Let G be a group and a G. If there exists an integer n  0 such that     an = 

e, then we say that the order of a is finite. In this case, if m is the least positive integer such 

that am = e, then m is called the order of a , written O(a). If         no such integer n exists, then a is 

said to be of infinite order. 
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0.5.6.Corollary: Let G be a group and a G. Then 

(i) an = e for integer n  0  O(a) divides n. 

(ii) < a > is of order m  O(a) = m. 

Proof: (i) follows from 0.5.4(2), while (ii) follows from 0.5.4(1) 

0.6  MODEL EXAMINATION QUESTIONS: 

0.6.1. Let (G,  ) be a group. Then the following are true. 

(i) The identity element in G is unique. 

(ii)  For any a G, the inverse of a in G is unique. 

0.6.2. Let G be a group. A nonempty subset H of G is a subgroup of G if and   only if for any a, b 

H, ab-1 H. 

0.6.3. Let H be a subgroup of a finite group G. Then  O(H) divides O(G). 

0.7  SUMMARY: 

In this lesson we have introduced the concept of a group and certain examples of 

groups have been given. Also we have defined the subgroup of a group and some 

elementary properties of subgroups have been presented. Also we have introduced the 

concept of a coset of a subgroup and proved Lagrange’s theorem. Further we have learnt the 

concept of a cyclic group and order of an element of a group and certain important 

properties of these have been proved. 

0.8  TECHNICAL TERMS: 

 Semi group  

 Group  

 Sub group  

 Subgroup generated by a set  

 Cosets of subgroups of a set  

 Index of a subgroup  

 Cyclic groups  

 Order of an element of a group. 

0.9  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

0.3.6. (1) Assume that HK  is a subgroup of G. If possible suppose that H  K and K H. 

Then there exists elements a H-K and b K-H. Now a, b HK. By assumption, ab 

HK. If ab H, then b = a-1ab H; a contradiction. On the other hand if ab K, then            

a = bb-1 K, again a contradiction therefore either H  K or K H. Converse is trivial. 

(2) Suppose HK = KH. HK is nonempty, since e  HK. Let a, b  HK. Then a = h1 k1, b = h2 

k2 for some h1, h2  H and k1, k2  K. Then ab–1 = h1 k1 k2
1 h2

1 = h1 y1 h2
1, where y1 = k1 

k2
1  K. Now y1 h2

1 KH = HK. Hence y1 h2
1= x1 y2 for some x1  H and y2  K. 

Therefore ab–1 = h1x1y2 = x2y2 where x2 = h1x1  H. Hence ab–1  HK. Thus HK is a 

subgroup. Conversely suppose that HK is a subgroup. Let a  KH. Then a = kh for some k  

K and hH. Now a–1= h–1k–1  HK  a  HK (Since HK is a subgroup) This implies KH  

HK. Next let b  HK. Then b–1  HK. This implies b-1 = xy for some x  H, y  K            
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b = y-1x-1  KH. Thus HK  KH. Hence HK = KH. 

0.4.6. Given that X = {1, 2, 3} and S3 be the group of all bijections on X; with the binary 

operation composition of mappings.  

Then S3 = {I,  ,  , 2 ,  , } Where  : X X  defined by  (1) = 2 ,  (2) = 1,  (3) = 3 

and (1) = 2,  (2) = 3,  (3) = 1 and I is the identity mapping on X. Note that  =  1 , 2 

 I and 3 = I. First we show that H = I,  is a subgroup of S3 clearly I is the identity 

element in S3 and hence in H also. Consider  2  I  H .Therefore H is a subgroup of S3. 

Note that H = I, , H = { ,  }, H2 = {2, 2}, are distinct right cosets of H in S3 

(2 =    S3 ). And H = I, ,  H = ,  , 2H = 2, 2, are distinct left 

cosets of H in S3 ( 2 =  S3 ). 

0.4.8. Proof is similar to that of 0.4.7. 
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LESSON -1 

NORMAL SUBGROUPS AND QUOTIENT 

GROUPS 

OBJECTIVES: 

The objectives of this lesson are to 

 define the concept of a normal subgroup of a group.  

 prove some equivalent conditions to normal subgroups.  

 prove the set of all right cosets of a normal subgroup is a group; which is called the 

quotient group. 

 

STRUCTURE: 

1.1 Introduction 

1.2 Normal subgroups 

1.3 Quotient Groups 

1.4  Model examination questions 

1.5  Summary 

1.6 Technical terms. 

1.7 Answers to self assessment questions 

1.8 Suggested Readings. 

1.1: INTRODUCTION: 

 Normal subgroups are a special kind of subgroups and these facilitate the 

construction of quotient groups. In this lesson we shall introduce the concept of a normal 

subgroup of a group and prove some theorems related to normal subgroups. Also we show 

that the set of all right cosets of a normal subgroup of a group is a group. 

1.2: NORMAL SUBGROUPS: 

1.2.1. Definition: A subgroup N of a group G is said to be a normal subgroup of G if for every 

g G and n N, gng–1 N. 

Equivalently, N is a normal subgroup of G if and only if gNg–1  N, for every g  G, where 

gNg–1 = {gng–1 / n N} 

Trivially the subgroups {e} and G itself are normal subgroup of G. 

1.2.2. Example: In S3, N = {I, ψ, ψ2} is normal subgroup of S3 ( For S3, See 0.4.6) 

1.2.3. Theorem: Let G be a group. A subgroup N of G is a normal subgroup of G if and only if 

gNg-1 = N for every g  G. 

Proof: Let N be a subgroup of G. Suppose that N is a normal subgroup of G. Then for g  G, 

gNg–1  N and g-1N(g–1)–1   N (Since g–1  G) 

 gNg–1  N and g-1Ng  N for any g  G. 

Since g-1Ng  N for any g  G, N = g(g–1Ng)g–1  gNg–1  N N = gNg–1 for any g  G. 

Conversely suppose that N = gNg–1 for any g  G. Then gNg–1  N for any g  G and 

hence N is a normal subgroup of G. 
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1.2.4. Theorem: Let N be a subgroup of a group G. Then N is a normal subgroup of G if and 

only if every left coset of N in G is a right coset of N in G. 

Proof: Given that N is a subgroup of a group G. Suppose N is a normal subgroup of G. Now 

we show that every left coset of N in G is a right coset of N in G. Let g  G.Then gN is a 

left coset of N in G. 

Now we show that gN = Ng. 

Since N is a normal subgroup of G, gNg-1  N and g-1Ng  N.  

Let x  gN  x = gn for some x  N. 

Now gng-1 gNg–1  N  gng–1  N gng–1g Ng. 

 gne Ng  gn Ng  x  Ng. 

This shows that gN  Ng. Now let y  Ng  y = mg for some m  N. Since gNg–1  
N, we have 

g–1mg N  g–1mg N  gg–1mg gN  emg gN  mg gN  y  gN. This 

shows that Ng  gN and hence gN = Ng. 

Thus every left coset of N in G is a right coset of N in G 

Conversely suppose that every left coset of N in G is a right coset of N in G. Now we will 

show that N is a normal subgroup of G. That is, for any g G, we will show that gng-1 N  

n N. Let g G.Then gN is a left coset of N in G. By our assumption, gN is a right coset 

of N in G. So gN = Nh for some h G. Now g = ge gN  g Nh. 

But g = eg  Ng. g Nh  Ng  Nh  Ng   . 

Since any two right cosets are either disjoint or equivalent and since Nh  Ng    , we have Ng 

= Nh. gN = Nh = Ng. 

Now for any n N, gng-1 gNg-1 = Ngg-1 = N 

 gng-1 N for all n N gNg-1  N. 

Therefore,  gNg-1  N   g  G and hence N is a normal subgroup of G. 

1.2.5. Self assessment question: A subgroup N of a group G is normal if and only if every 

right coset of N in G is a left coset of N in G. 

Note that if G is abelian, then every subgroup of G is normal. 

1.2.6. Problem: If G is a group and H is a subgroup of index 2 in G, prove that H is a 

normal subgroup of G. 

Solution: Suppose G is a group and H is a subgroup of index 2 in G. Let a G, if a H, then 

clearly aH = Ha. Assume a ∉ H. Since H is a subgroup of index 2, we have G = H  aH and 

HaH =  . Also G = H Ha and HaH =  . Thus aH = Ha, a ∉ H. Hence aH = Ha for all 
a G.Then by 1.2.4, H is a normal subgroup of G. 

1.2.7. Problem: Show that the intersection of two normal subgroups of G is a normal 

subgroup of G. 

Solution: Let H and K be two normal subgroups of a group G. Now we will show that H K 

is a normal subgroup of G. 

Let g G. Let h H  K. Then h H and h K. Since H and K are normal subgroups 

of G, we have ghg–1 H and ghg–1 K. This implies ghg–1 H  K. Therefore ghg–1 H 

 K for all h H  K and for all g G. Hence H  K is a normal subgroup of G. 

1.2.8. Problem: If N is a normal subgroup of a group G and H is any subgroup of G, prove 

that NH is a subgroup of G. 
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Solution: Suppose N is a normal subgroup of a group G and H is any subgroup of G. 

Now we will show that NH is a subgroup of G. 

Now NH = {nh / n N, h H}. 

By 0.3.3, it is enough if we show that xy-1 NH for any x , y NH. 

Let x , y  NH x = n1 h1, y = n2 h2 for some n1, n2  N and h1, h2  H. Now h1h2
-1  H and 

h1h2
-1G and n2

-1 N. Since N is a normal subgroup of G, h1h2
-1n2

-1(h1h2
-1)-1  N. 

Consider xy-1 = n1h1(n2h2)
–1 = n1h1h2

1n2
-1 = n1h1h2

1n2
-1(h1h2

-1)-1h1h2
-1NH. 

(Since n1h1h2
1n2

-1(h1h2
-1)-1N and h1h2

-1H). Therefore NH is a subgroup of G. 

1.2.9. Problem: If H is a subgroup of a group G and N is a normal subgroup of G, show that 

H  N is a normal subgroup of H. 

Solution: Suppose H is a subgroup of G and N is a normal subgroup of G. Now we will show 
that H N is a normal subgroup of H. Clearly H  N is a subgroup of H. Let h  H. 
Now for any x  HN, consider hxh–1 H (Since h, x  H). Also hxh–1 N (Since N 
is a normal subgroup of G and x  N). Therefore hxh–1 HN and hence H N is a normal 
subgroup of H. 

1.2.10. Problem: Suppose that N and M are two normal subgroups of G and that N 
M = (e). Show that for any n  N and m  M, mn = nm. 

Solution: Suppose that N and M are two normal subgroups of a group G such that NM 

= (e). Let nN and mM. Consider nmn-1m-1M (Since M is a normal subgroup of G) 

and nmn-1m-1N (Since N is a normal subgroup of G). This implies that nmn-1m-1 
NM = (e) and so nmn-1m-1 = e. 

⇒ nmn-1e = m ⇒ nmn-1 = m ⇒ nmn-1n = mn 

⇒ nme = mn ⇒ nm = mn. 

Thus for any nN, mM we have mn = nm. 

1.2.11. Theorem: A subgroup N of a group G is a normal subgroup of G if and only if the 

product of two right cosets of N in G is again a right coset of N in G. 

Proof: Let N be a subgroup of a group G. Suppose N is a normal subgroup of G.              

Let a, b  G. Consider the right cosets Na and Nb. Since N is a normal subgroup of G, by 

1.2.4, we have Na = aN. Now Na Nb = N(aN)b = N(Na)b = NNab = Nab ( Since N is a 

subgroup of G, NN = N). 

Therefore NaNb = Nab, which is right coset of N in G. 

Conversely suppose that the product of two right cosets of N in G is again a right coset of N in 

G. 

Now we show that N is a normal subgroup of G, that is gNg–1  N for any g  G. Let g  G. 

By our supposition, NgNg–1 = Na for some a  G. 

Now e = egeg–1 NgNg–1 = Na ⇒ Ne = Na. 

⇒ N = Na. ⇒ N = NgNg-1 

Now egNg–1   NgNg-1 = N ⇒ gNg–1   N 

So gNg-1  N for any g  G and hence N is a normal subgroup of G. 

 

1.3: QUOTIENT GROUPS: 

Let N be a normal subgroup of a group G and let G/N denote the collection of all 

right cosets of N in G. We prove that G/N is a group in the following theorem. G/N is called the 

quotient group or a factor group of G by N. 
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1.3.1. Theorem: Let N be a normal subgroup of a group G. Then G/N is also a group. 

Proof: Given that N is a normal subgroup of a group G. Consider G/N = {Na│aG}. 

Define a binary operation  on G/N as follows.  

Let Na, Nb  G/N 

Define Na  Nb = Nab. Now we show that (G/N, ) is a group. First we show that  is well defined. 

Let Na, Nb, Na1, Nb1  G/N such that Na = Nb and Na1 = Nb1. Then ab–1 N and a1b1
–1 N.  

Now a1b1
–1 N and since N is a normal subgroup of G, ba1b1

–1b–1 N. 

Consider aa1(bb1)
–1 = aa1b

–1b–1ab–1(ba1b1
–1b–1)  N (Since ab-1 N and ba1b1

–1b–1 N and N 

is a subgroup of G). 

This implies that Naa1 = Nbb1 Na  Na1 = Nb  Nb1 

So   is a well defined binary operation on G/N. Therefore for any Na, Nb G/N, Na  Nb  

G/N . 

Let Na, Nb, Nc  G/N. 

Consider Na  (Nb  Nc) = Na  (Nbc) = Na(bc) = N(ab)  c  = Nab  Nc = (Na  Nb)  Nc. 

Therefore Na  (Nb  Nc) = (Na  Nb)  Nc for any Na, Nb, Nc  G/N and  is associative 

on G/N. Let Na  G/N. Now Ne  G/N, where e is the identity element in G. 

Consider Na  Ne = Nae = Na and Ne  Na = Nea = Na. 

Therefore Ne is the identity element in G/N. 

Let Na  G/N. Now a-1 G and so Na-1 G/N. 

Consider Na  Na-1 = Naa-1 = Ne and Na-1   Na = Naa-1 = Ne. 

Therefore Na-1 is the inverse of Na in G/N. Hence (G/N,  ) is a group. 

1.3.2. Theorem: If G is a finite group and N is a normal subgroup of G, then 

O(G/N) = O(G)/O(N). 

Proof: Suppose G is a finite group and N is a normal subgroup of G. By 0.4.4, the number 

of right cosets of N in G is equal to O(G)/O(N). Since G/N is the set of all right cosets of N in 

G, we have O(G/N) = O(G)/O(N). 
 

1.4. MODEL EXAMINATION QUESTIONS: 

1.4.1. Define the concept of a normal subgroup of a group. Show that a subgroup N of a group 

G is normal if and only if gNg-1 = N for every g  G. 

1.4.2. Show that a subgroup N of a group G is a normal subgroup of G if and only if every 

left coset of N in G is a right coset of N in G. 

1.4.3. If G is a group and H is a subgroup of index 2 in G, show that H is a normal 

subgroup of G. 

1.4.4. If N is a normal subgroup of a group G and H is any subgroup of G, prove that NH is 

a subgroup of G. 

1.4.5. If H is a subgroup of a group G and N is a normal subgroup of G, show that H  N is a 

normal subgroup of G. 

1.4.6. Suppose N and M are two normal subgroups of a group G Such that NM = (e). Show 

that for any n  N, mM, mn = nm. 

1.4.7. Show that a subgroup N of a group G is a normal subgroup of G if and only if the 

product of two right cosets of N in G is again a right coset of N in G. 
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1.5  SUMMARY: 

 In this lesson we have introduced the concept of a normal subgroup of a group and 

proved some results related to normal subgroups. Also we consider the set of all right cosets 

of a normal subgroup of a group and we proved that it is a group, which is called the quotient 

group. 

1.6  TECHNICAL TERMS: 

 Normal subgroup  

 Quotient group 
 

1.7 ANSWERS TO SELF ASSESMENT QUESTIONS: 

1.2.5 Given that N is a subgroup of a group G. Suppose N is a normal subgroup of G. Now 

we will show that every right coset of N in G is a left coset of N in G. 

Let gG. Then Ng is a right coset of N in G. Now we show that Ng = gN. Since N is a 

normal subgroup of G, gNg-1  N and g-1Ng  N.  

Let y  Ng ⇒ y = mg for some m  N. 

Since g-1Ng  N, we have g-1mg  N ⇒ gg-1mg  gN 

⇒ emg  gN ⇒ mg  gN ⇒ y  gN.  

This shows that Ng  gN. 

Let x  gN ⇒ x = gn for some n  N. 

Now gng-1 gNg-1  N ⇒ gng-1 N ⇒ gng-1g  Ng. 

⇒ gne  Ng ⇒ gn  Ng ⇒ x  Ng. 

This shows that gN  Ng and hence Ng = gN. Thus every right coset of N in G is a left coset 

of N in G. 

Conversely suppose that every right coset of N in G is a left coset of N in G. Now we will 

show that N is a normal subgroup of G. That is for every gG we will show that gng-1 N 

for all n  N. 

Let g  G. Then Ng is a right coset of N in G. By our supposition Ng is a left coset of N in G. 

So Ng = hN for some h  G. 

Now g = eg  Ng ⇒ g  hN. 

But g = ge  gN. Therefore g  gNhN ⇒ gNhN . 

Since any two left cosets are either disjoint or equal and gNhN  , we have gN = hN. 

Therefore gN = Ng = hN. 

Now for any n  N, gng-1  gNg-1 = Ngg-1 = Ne = N. 

⇒ gng-1  N for all n  N. 

So gng-1 N for all n  N and for all g  G and hence N is a normal subgroup of G. 
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LESSON - 2 

HOMOMORPHISMS 
 

OBJECTIVES: 

Objectives of this lesson are to 

define the notion of a homomorphism of groups and give certain examples. 

define the concept of the kernal of a homomorphism and prove certain elementary 

properties of homomorphism and their kernels. 

define the notion of an isomorphism of groups and prove certain elementary properties                                          

of isomorphisms. 

prove the fundamental theorem of homomorphisms. To prove the cauchy’s    and sylow’s 

theorems for abelian groups. 

STRUCTURE: 

2.1 Introduction 

2.2 Definitions and examples of homomorphisms 

2.3 The kernel of a homomorphism 

2.4 Isomorphisms 

2.5 The fundamental theorem of homomorphisms 

2.6 Cauchy’s Theorem and Sylow’s theorem 

2.7    Model examination questions 

2.8    Summary 

2.9    Technical terms 

2.10  Answers to self assessment questions 

 2.11  Suggested Readings 

2.1: INTRODUCTION: 

A relationship between groups G and G1 is generally exhibited in terms of a  structure 

related mapping f: G  G
1 which are called homomorphisms. Such a mapping often gives us 

information about the structure of G1 from known structural properties of G or information 

about the structure of G from known structural properties of G1. The study of such structure 

related mappings from one algebraic structure to a similar algebraic structure is an important area 

in algebra. In this lesson, we shall introduce the concept of a homomorphism explicitly and study 

certain important elementary properties of homomorphisms. 

2.2: DEFINITION AND EXAMPLES OF HOMOMORPHISMS: 

2.2.1. Definition: Let (G, ) and (G1, ) be any two groups. A mapping f: G  G1 is called a 

homomorphism of groups if f(a  b) = f(a)  f(b) for all a, bG. 

 In other words, the image of the product a  b is equal to the product of the   images 

f(a) and f(b) for any elements a and b in G. 

2.2.2. Example: Let G be the group of all positive real numbers under the usual 

multiplication and G1 be the group of all real numbers under the usual addition. Define f: G 

  G1 by f(a) = log2a for all aG. 

Then f(a.b) = log2(a.b) = log2a+log2b = f(a) + f(b) for all a, bG. Therefore f is a 

homomorphism of groups. 
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2.2.3. Example: Let G be the group of all real numbers under the usual addition and G1  be 

the group of all non zero real numbers under usual multiplication. 

Define f : G G1 by f(a) = 2a for all aG. 

Then f (a+b) = 2a+b= 2a.2b = f(a) . f(b) for all a, b G and hence f is a homomorphism. 

2.2.4. Example: Let (G,  ) and (G1, ) be any groups. 

Define : f : G  G
1 by  f(a) = e1 for all aG 

where e1 is the identity element in G1 

Then f(ab) = e1 = e1  e1 = f(a)  f(b) for any a, bG and hence f is a homomorphism which is 

called the trivial homomorphism. 

2.2.5. Example: Consider the group  of all integers under the usual addition and let n be an 

arbitrarily fixed integer. Define f :    by f(a) = na for all a  . Then f is a homomorphism. 

2.2.6. Example: Let G1 = {1, –1} where 1.1 =1, (1)(–1) = –1, (–1)(1) = –1 and 

(–1) (–1) =1. Then G1 is a group. 

Define : f :   G1 by  

f(a)  =  

Then f(a+b) = f(a) f(b) for all a, b  and hence f is a homomorphism. 

2.2.7. Self Assessment question: 

Prove that the mapping f in 2.2.6 above is a homomorphism. 

2.2.8.  Example : Let n be any positive integer and  n be the addition group of integers modulo 

n. Define f :    n by f(a) = r, where a = qn +r, 0  r  n . Note that r is the remainder 

obtained by dividing a with n. Then f is a homomorphism. 

2.2.9. Self Assessment Question: Prove that f is a homomorphism in 2.2.8. 

2.2.10. Example: For any group G, the map f: G  G defined by f(a) = a for all aG is a 

homomorphism called the identity homomorphism. 

2.2.11. Example: Let G be the group of all 2 x 2 matrices  over the real numbers for 

which ad – bc  0. Then G is a group under the usual matrix multiplication. Let G1 be the group 

of non-zero real numbers under the usual multiplication. 

Define f : G  G1 by 

f  = ad–bc, for  all   G. Then f is a homomorphism. 

2.2.12. Example : Let G,  be any group and let aG. Let ( , +) be the group of all integers 

where + is the usual addition. Define f:   G by f(n) = an for all n , where an is defined 

inductively by 
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an =          

 

Here a-1 is the inverse if a and e is the identity element in G. Then f is a 

homomorphism. 

In the following theorem, certain important elementary properties of 

homomorphisms are derived. 

2.2.13. Theorem: Let f : G  G1 be a homomorphism of groups. Then the following hold. 

(i) f(e) = e1, where 

e and e1 are the identities in G and G1 respectively 

(ii)  f(a–1) = f(a–1) for any aG 

(iii)  For any a, bG,  f (a) = f (b)  f (ab–1) = e1   f (a-1b) = e1 

Proof: (i) Consider 

f(e) f(e) = f(e.e) = f(e) = e1. f(e) 

and now, by the cancellation laws in G1, we have f(e) = e1. 

(ii) For any aG, we have 

f(a) f(a–1) = f( aa–1) = f(e) = e1 

This implies f(a–1) is the inverse of f(a). Since the inverse of an element is unique,  we have     

f(a–1) = f(a)–1. 

(iii) For any a, bG.  

f (a) = f (b)   f (a) f (b–1) = e1 

        f (a) f (b–1 ) = e1  

       f (ab–1) = e1 
and f (a) = f (b)  f (a)–1 f (b) = e1   
             f (a–1) f (b) = e1  

            f (a–1b) = e1. 

2.2.14. Theorem: Let N be a normal subgroup of a group G and G/N the quotient group. 

Define f : G → G/N by f(a) = aN for any aG. Then f is a surjective (onto) homomorphism. 

Proof: Given that N is a normal subgroup of a group G. 

Then G/N = {aN / a ∊G}. Recall that the binary operation in G/N is defined as          

aN.bN= (ab)N for any a, bG and hence f(a.b) = (ab)N = aN.bN = f(a).f(b). Therefore f is 

a homomorphism. 

Let aN  G/N . Then a  G . Now f(a) = aN and hence f is onto. Thus f is    a surjective 

homomorphism. 

2.2.15. Self assessment question: If f : G H and g : H K are homomorphisms of  groups, 

prove that gof : G  K is also a homomorphism. 

2.3: THE KERNEL OF A HOMOMORPHISM: 

 The identity element of G to that of G1. There in 2.2.13(i) Theorem we have learnt 

that any homomorphism of G into G1 carries may be several elements in G which are carried 

to the identity element G1. The collection of such elements in G is called the kernel of that 
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homomorphism and this plays an important role in the study of the homomorphisms of 

groups. 

2.3.1. Definition: Let f : G  G1 be a homomorphism of groups and e1 be the identity  element 

of G1. The Kernel of f is defined as the set Ker f = {a  G / f (a) = e1} 

2.3.2. Self Assessment question: Determine the kernels of each of the homomorphisms       

given in examples 2.2.2 to 2.2.12. 

2.3.3. Theorem : The kernel of any homomorphism f : G  G1 is a normal subgroup of  G. 

Proof : Let f : G  G1 be a homomorphism of groups and k = Ker f = {a  G / f (a) = e1}. 
where e and e1 are the identity elements in G and G1 respectively. By 2.2.13(i) theorem, f(e) 

=e1 and eK, so that K is a nonempty subset of G.  

Now a, bK  f(a) = e1 and f(b) = e1 

 f(ab–1) = e1 (by 2.2.13 (iii)) 

 ab–1K. 

Therefore K is a subgroup of G. 

Also aK and xG f(xax–1) = f(x) f(a)f(x–1) 

                                                    = f(x)e1f(x)–1 = e1  xax–1K  

Thus K is a normal subgroup of G. 

2.3.4. Note: A converse of 2.3.3 can be started as follows: Any normal subgroup of G is the 

Kernel of some homomorphism of G into a suitable group G1. This statement is also true; for, 

let N be a normal subgroup of a group G and consider the  quotient group G/N and define           

f : GG/N by f(a) = aN for any aG (see 2.2.14).                                                    

Then f is a homomorphism and Ker f = {a  G / f (a) = N} = { a  G / aN = N} = N. 

Note that N is the identity element of the quotient group G/N. Before taking up the 

next important property of the Kernels of homomorphisms. Let us recall that, for any 

mapping f : A  B and bB, an element aA is called an inverse image of b under f if f(a) = b. 

There may be several (or not even one) inverse images of b. However, if f is a surjection of 

A onto B, then any bB has at least inverse image in A under f. In the following we describe 

an important property of Kernels of surjective homomorphisms. 

2.3.5. Theorem: Let f be a homomorphism of G onto G1 (i.e, f: G  G1 is a surjective 

homomorphism) and y  G1. Let K be the Kernel of f. Then the set of all inverse images of  

y in G under f is equal to the coset aK, where a is any inverse image of y. 

Proof : Given that f is a homomorphism of G onto G1 and yG1. Let a be an inverse image 

of y in G under f; i.e, aG such that f(a) = y. Then for any xG, xak  x = ak for some 

kK. 

 a–1x = kK  f(a–1x) = e1 

 f(a–1)f(x) = e1  f(a)–1 f(x) = e1 

 f(x) = f(a) = y  (by 2.2.13 (iii)) 

Thus ak = {xG/f(x) = y}. 

2.4: ISOMORPHISMS: 

Consider the group G = {1,–1} under the usual multiplication and the group  2 ={0, 1} 

under the addition modulo 2. These two groups look like similar, except for the labeling or 

naming of the elements. The identity in G is 1 while in  2 it is 0. Also the other element –1 in 
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G has the property that (–1)(–1) = 1 while the element 1 in  2 has a similar property that 1+1 

= 0. In other words, there is a bijection f : G  2 which is a homomorphism too, such an f is 

defined by f(1) =0 ( which is a necessary property of homomorphisms) and f(–1) =1. Let us 

formalise this idea in the following. 

2.4.1. Definition: A homomorphism f : G  G1 is called an isomorphism if f is a bijection 

(that is, f is both one-one and onto). Two groups G and G1 are said to be isomorphic and is 

expressed as G  G1 if these is an isomorphism f : G  G1. 

2.4.2. Theorem: A homomorphism f : G  G1 is an injection if and only if Ker f = {e},   

where e is the identity in G. 

Proof: Let f : G  G1 be a homomorphism of groups. Suppose that f is an injection. 

Recall that Ker f = {a  G / f (a) = e1} 
Since it is always true that f(e) = e1, we have e  Kerf. On the other hand, a  Kerf  
f(a)=e1 = f(e) 

 a =e (since f is one - one)  

Thus Ker f ={e} 

Conversely suppose that ker f = {e}. Then, for any elements a and b in G,  f(a) = f(b)         

 f(ab–1) = e1 ( by 2.2.13(iii) ) 

 ab–1 Ker f = {e}  ab–1 = e  a = b. 

Thus f is an injection. 

Injective homomorphisms are usually called monomorphisms and surjective ho- 

momorphisms are called epimorphisms. An isomorphism is both a monomorphism and an 

epimorphism. A homomorphism f: G  G1 is an isomorphism if and only if Kerf = {e} and 

every element of G1 has an (unique) inverse image in G. 

2.4.3. Theorem: (i) The inverse of an isomorphism is also an isomorphism 

(ii) If f: G  H and g: H  K are isomorphisms, then so is gof. 

Proof: (i) Let f : G H be an isomorphism. Then f is a bijective homomorphism.  

Since  f is a bijection, the inverse map f–1 : H  G exists such that fof–1 and f–1of are identity 

mappings of H and G respectively. Also f–1 is clearly a bijection.  

Further, for any x, yH, we have 

f(f–1(xy)) = xy = f(f–1x).f (f–1y) = f(f–1(x). f–1(y)) and since f is an injection,                                  

we have  f–1 (x.y) = f–1(x).f–1(y) 

Thus f–1 : HG is a homomorphism also and f–1 is an isomorphism. 

(ii) Follows from the facts that the composition of two bijections (homomorphisms) is 

also a bijection ( homomorphism respectively). 

2.4.4. Self Assessment Question: Let G, H and K be groups. Then prove that the following 

(i) G  G 

(ii) G   H  H  G 

(iii) G  H and H  K  G  K 

2.5: THE FUNDAMENTAL THEOREM OF HOMOMORPHISMS: 

We shall prove a very crucial and fundamental theorem which states that any 
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homomorphic image of a group G is isomorphic to a quotient of G. In theorem 2.2.14, we 

have already proved that any quotient G/N of a group G is a homomorphic image of G. We 

prove a converse of this in the following. 

2.5.1. Theorem (Fundamental theorem of Homomorphisms): Let f: G G1 be a 

surjective homomorphism of groups. Then G/kerf  G1. 

Proof : Given that f: G G1is a surjective homomorphism of groups. Let K = Ker f. We have 

already proved that K is a normal subgroup of G (see 2.3.3). Now define g: G/K  G1 by 

g(aK) = f(a). 

for any aK  G/K with a  G. 

Let us recall that, for different elements a and b, aK and bK may be equal. On the face of it, 

g(aK) looks like depending on a. We shall first prove that g(aK) depends on the coset aK but 

note on the element a.  

For any a, bG, aK = bK  

 ab–1K = Kerf 

 f(a) = f(b)                       (by 2.2.13 (iii)) 

This proves that g is well defined and g is an injection also.  

Further for any a, b  G, 

g(ak.bk) = g((ab) K) = f(ab) = f(a).f(b) = g(aK).g(bK) 

and hence g is a homomorphism and g is an injection also.  

Now, we will show that g is onto 

Let x G1. Since f is surjective, x = f(a) for some a  G.  

Now aK  G/K and g(aK) = f(a) = x 

Therefore g is surjective (onto). 

Thus g is an isomorphism of G/K onto G1 and G/K   G1. 

The above theorem is actually an important tool in the development of the structure 

theory of groups. Before going to certain applications of the fundamental theorem of 

homomorphisms, let us prove the following. 

2.5.2. Theorem: Let f : G G1 be a surjective homomorphism of groups with Kernel K. 

(i) If H1 is a subgroup of G1 and H = f –1(H1) = {a  G / f (a)  H 1}, then H is a subgroup 

of G containing K.  

(ii) The correspondence H 1f–1(H 1) is a one-to-one correspondence between the 

subgroups of G1 and the subgroups of G containing K. 

(iii) H1 is a normal subgroup of G1 if and only if f–1(H1) is a normal subgroup of G. 

Proof: Given that f : GG1 is a surjective homomorphism of groups, with kernel K. 

(i) Let H1 is a subgroup of G1 and H = f–1(H1) = {a  G / f (a)  H 1} 
For any aK, we have f(a) = e1H1 and hence aH.  

Therefore K H and in particular H    
Also a, bH  f(a),f(b) H1 

 f(a).f(b)–1H1                       ( Since H1 is a subgroup of G1) 

 f(a).f(b–1) H1  f(ab–1) H1  ab–1H  

Thus H is a subgroup of G containing K. 

(ii) Let S1 and T1 be subgroups of G1 such that f–1(S1)  f–1(T1)  

Then xS1  f(a) =x for some aG (since f is onto) 
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 af–1(S1)  f–1(T1)  f(a) T1  xT1 

Therefore, S1  T1. Thus S1 = T1 whenever f–1(S1) = f–1(T1), which implies that the 

correspondence H1  f–1(H1), is one-one.  

To prove that this is onto also, let S be a subgroup of G containing K. Put H1 = {f(a)/aS}. 

Then clearly H1 is a subgroup of G1 and S  f–1(H1)   

Further, bf–1(H1)  f(b) H1  f(b) = f(a) for some aS. 

 f(ba–1) = e1 and aS 

 ba–1 Ker f = K S and aS 

 b = (ba–1) aS 

Therefore, f–1(H1)  S and hence f–1(H1)=S 

Thus H1  f–1(H1) is a one-to-one correspondence between the subgroups of G1 and the 

subgroups of G containing K. 

(iii) Suppose H1 is a normal subgroup of G1.Then xyx–1H1 for all yH1 and x  G1. 

Now, for any bG and af–1(H1), we have f(a) H1 and f(b) G1 and hence  f(bab–1) = f(b) 

f(a)f(b–1) = f(b)f(a)f(b)–1H1 

So that bab–1 f–1(H1) 

Thus f–1(H1) is a normal subgroup of G. 

Conversely suppose that f–1(H1) is a normal subgroup of G, where H1 is a 

subgroup of G1. Let yH1 and xG1. Since f is onto, we can choose a and b in G such that         

y = f(a) and x = f(b). Then af–1(H1) and bG. Since f–1(H1) is a normal subgroup of G, we 

have bab–1 f–1(H1) and therefore f(bab–1) H1 

Now xyx–1 = f(b)f(a)f(b)–1 = f(bab–1)  H1.  

Thus H1 is a normal sub group of G1. 

2.5.3. Theorem: Let f : G  G1 be a surjective homomorphism with kernel K. Let N1 be a 

normal subgroup of G1 and N = f–1 (N1). 

Then G/N  G1/ N1 and equivalently G/N  (G/K)/(N/K).  

Proof: Given that f: G  G1 be a surjective homomorphism with kernel K and N1 is               

a normal subgroup of G1 and N = f–1(N1). 

Define g : G  G1/N1 by g(a) = f(a)N1 for all aG.  

Then, for any a, bG, we have g(ab) = f(ab)N1= f(a) f(b) N1 ( since f is a homomorphism)  

                                                                           = f(a) N1. f(b) N1  

                                                                           = g(a) g(b)  

Therefore g is a homomorphism. Now we show that g is onto. 

Let x G1/N1  x = zN1 for some zG1 

Since zG1 and since f is onto, z = f(a) for some aG.  

Now x = zN1 = f(a)N1 = g(a) 

Therefore g is onto hence g : G  G1/N1 is a surjective homomorphism. By the fundamental 

theorem of homomorphisms (2.5.1), 

G/ker g  G1/ N1 

But Kerg = {a  G / g(a) = N 1, the identity in G1/ N1} 
   = {a  G / f (a)N1 = N 1} 
   = {a  G / f (a)  N1}  
   = f–1(N1)  

   = N 
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Thus we have G/N  G1/ N1 

Also, if we restrict f to N, then it becomes a surjective homomorphism of N onto N1 whose 

kernel is K again and hence by the fundamental theorem of homomorphisms (2.5.1). 

N1  N/K and G1  G/K 

Thus G/N  G1/ N1  (G/K)/(N/K). 

2.5.4. Self Assessment Question: Let N and K be normal subgroup of a group G such that   

K  N. Then prove that N/K is a normal subgroup of G/K and that (G/K)/(N/K)  G/N. 

2.5.5. Self Assessment question: Let N be a normal subgroup of a group G and K be any 

subgroup of G. Then prove that KN is a subgroup of G, K  N is a normal subgroup of K and 

K/ K  N  KN/N. 

2.6: CAUCHY’S THEOREM AND SYLOW’S THEOREM: 

In the previous section, we have learnt that the homomorphic images of a given group 

G coincide (upto isomorphism) with the quotient G/N of G, where N  is a normal subgroup of G. 

A group is said to be simple if it has no nontrivial homomorphic images or equivalently, if it 

has no nontrivial normal subgroups. When we construct the quotient group G/N, where N is a 

normal subgroup of G, knowing the structure of G/N help us in knowing the structure of G upto 

N”. We can ascertain certain information about G by looking at those of a quotient of G. Those 

ideas are applied in proving the following two theorems. In fact, later we  prove those results in 

a much more several set up and in easier way. However, the proofs of these two results are 

important on their own in view of the use of several group theoritic concepts and illustrations 

in proving these. 

2.6.1. Theorem ( Cauchy’s Theorem for abelian groups): Let G be a finite abelian  group 

and p is a prime number such that p divides O(G). Then G has an element a such that a  e 
and ap = e. 

Proof: We shall use induction on O(G). Since p divides O(G), we have p  O(G). If O(G) = p, 

then we can take any element a  e in G, for, by Lagrange’s theorem, O(a) = p and hence ap = e. 

Next suppose that O(G) > p and assume that the theorem  is true for all abelian groups of order 

less than O(G). Choose an element b  e in G. Let n be the order of b; that is, n is the least 

positive integer such that bn = e. We  shall distinguish two cases. 

Case (i) : Suppose p divides n. Then   e and ( )p
  

= e and hence  is the required 

element a. 

Case (ii): Suppose p does not divide n. Let H be the subgroup generated by b in G. Then   

O(H) = n > 1. Since G is an abelian group, H is a normal subgroup of G and hence we can 

consider the quotient group G/H. Also, we have 

O(G) = O(H). O(G/H) = n.O(G/H). 

Since p divides order of G and p does not divide n, it follows that p divides O(G/H). 

Also G/H is a group of order less than O(G) 

(Since n > 1 and O(G/H) = O(G)/n). Therefore, by the induction hypothesis, these exists a 

non-identity element X in G/H such that Xp = H, the identity element in G/H. X  G/H implies 

that X = xH for some xG. Then Xo(x) =(xH)o(x) = xo(x). H = H. Since O(X) = p in G/H, we get that p 

divides O(x). Now, as in case (i), xO(x)/p is the required element a in G. 
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2.6.2. Theorem (Sylow’s theorem for abelian groups): 

Let G be a finite abelian group, p a prime number and r a non-negitive integer such 

that pr divides O(G) and pr+1 does not divide O(G). Then G has a subgroup of order pr. 

Proof: Given that G is a finite abelian group, p a prime number and r a non- negative 

integer such that pr divides O(G) and pr+1 does not divide O(G). 

If r =0, then pr=1 and {e} is the subgroup of order pr. Suppose r > 0. Then p divides O(G) 

and hence by the Cauchy’s theorem (2.6.1), there exists an element a  e in G such that ap = 

e. 

Now, consider H = {x  G / x 
pn

= e for some n   +} .  

Then H has at least two elements, namely e and a. We shall prove that H is a subgroup of 

G. 

Let x, yH. Then x 
pn

= e and y 
pn

= e for some n, m  +. 

( xy
1 )

pn+ m   

x p
n+ m  ( y p

n + m  )
1  

= e  xy 1  H . 

Therefore H is a subgroup of G. Next, we shall prove that p is the only prime dividing O(H). 

If q is a prime number dividing O(H) and q  p , then again by 2.6.1, there exists x  e in H 

such that xq = e. Since xH, x 
pn

 = e for some n   +. Since q  p, q and pn are relatively prime 

and hence these exist integers t and s such that tq + spn =1 and now consider  

x = x1 =  = ( xq )
t 

.(  xp
n  )

s  

= e, which is a contradiction, since by our choice x  e . 

Therefore no prime other than p divides O(H). This implies that o(H) = pm for some m  0 .   
 

Since O(H) divides O(G) ( by the Lagrange’s theorem) and since pr + 1 does not divide O(G), 

it follows that 0  m  r . 

Since aH and a  e , O(H) > 1 and hence m > 0. 

Finally we prove that m = r and conclude that H is the required subgroup of G. On  the 

contrary, suppose m < r. Consider the quotient group G/H (note that, since G is  abelian, H is a 

normal subgroup of G). 

Then pr divides O(G) = O(G/H) O(H) = O(G/H).pm; so that pr – m divides o(G/H) and  r – m > 0. 

Thus p divides O(G/H). Again by the  Cauchy’s theorem 2.6.1, there exists an element xH in 

G/H such that. xH  H and (xH)p = H. 

Then xpH = H, and hence xp
H so that ( x p )

pn  
= e for some n and therefore x 

pn +1  
= e which 

implies that xH and xH = H, which is a contradiction to the choice of x. Thus m = r and 

O(H) = pr 

Later, we extend both the above theorems for arbitrary finite groups. However, if  G is a finite 

abelian group. Then the subgroup H described in theorem 2.6.2 is unique. This is proved in 

the following. 

2.6.3. Theorem: Let G be a finite abelian group, p a prime and r a non-negative integer  such 

that pr divides O(G) and pr+1 does not divide O(G). Then G has a unique subgroup of order 

pr. 

Proof : The theorem is trivial for r = 0. Therefore, we can suppose that r  > 0. We  have 
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proved the existence of a subgroup of order pr in the Sylow’s theorem (2.6.2). 

So we shall now prove the uniqueness. Let H and K be any subgroups of order pr            in G. Since G 

is abelian, HK=KH and hence HK is a subgroup of G. Also 

O(HK) =  =  

Therefore O(HK) = ps for some positive integer s. By the Lagrange’s theorem, ps divides 

O(G). Since H  HK, pr = O(H)  O(HK) = ps and hence r  s. But since   pr + 1 does not divide 

O(G), s can not be strictly greater than r. That is r = s which implies that O(H) = O(HK) and 

hence H = HK. This yields that k  H. Since H and K are of the same order, we get that H = K. 

The above theorem fails for non abelian groups, that is, if G is a finite non abelian 

group such that pr O(G) and pr+1  O(G) then G may possess more than one subgroups of order 

pr. The following illustrates this.  

2.6.4. Example: Consider the group S3, the symmetric group of degree 3. Then S3 is a  non 

abelian group of order 3! = 6. Take p = 2 and r = 1. Then pr O(S3) and pr+1  O(S3). 

For any transposition  in S3, {id, } is a subgroup of order pr in S3. There are three distinct 

transpositions in S3, namely (1, 2), (2, 3) and (3, 1) and hence these are three distinct 

subgroups each of order 2, in S3 

2.6.5. Self Assessment Question: How many subgroups are there in S3, each of order 3? 

Later, we shall prove that any two subgroups H and K of order pr, where pr + 1 does 

not divide O(G), must be conjugate to each other, in the sense that       H = aKa–1 for some 

aG, even though they may not be equal 

2.6.6. Self Assessment Question: Prove that any two subgroups of order 2 in S3 are 

conjugate to each other . 

2.7. MODEL EXAMINATION QUESTIONS: 

2.7.1. Define the concepts of a homomorphism of groups and its Kernel. Prove that a 

homomorphism f : G  G1 is injective if and only if Ker f = {e} 

2.7.2. State and prove the Fundamental theorem of homomorphisms.  

2.7.3. State and prove the Cauchy’s theorem for finite abelian groups.  

2.7.4. State and prove the Sylow’s theorem for finite abelian groups. 

2.7.5. If G is a finite abelian group, p is a prime number and r is a non negitive integer. such that 

pr O(G) and pr+1  O(G), then prove that there can be atmost one subgroup of order pr in G. Is 

this true for non abelian groups ? Justify your answer. 

2.8  SUMMARY: 

In this lesson, we have learnt the concepts of a homomorphism, isomorphism and 

Kernel of a homomorphism and proved certain important properties  of these. We have proved 

three very important theorems, namely, the fundamental theorem of homomorphisms, 

Cauchy’s theorem for finite abelian groups and Sylow’s theorem for finite abelian groups. 
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2.9  TECHNICAL TERMS: 

 Homomorphism. 

 Isomorphism.  (bijective homomorphism)  

 Monomorphism. (injective homomorphism) 

 Epimorphism.             (surjective homomorphism)  

 Kernel of a homomorphism. 

 Homomorphic image. 

 Fundamental theorem of homomorphism. 

 Cauchy’s Theorem. 

 Sylow’s Theorem. 

2.10  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

2.2.3. The identity in G1 is 1 and hence 

ker f = {a  G / f (a) = 1} 
                          = {a   / 2a = 1} 
                      = {0} 

2.2.4. Every element of G is mapped to e1 and hence ker f = G 

2.2.5. f :    is defined as f(a) = na 

for any a . If n = 0, then f is the trivial homomorphism and ker f = .                                                   

 If n  0, then ker f  = {a  /na = 0} = {0}. 

2.2.6. ker f = {a   /f(a) = 1} 

                  = {a  /a is even} = The set of even integers. 

2.2.7: Let a, b . We have prove that f(a+b) = f(a) f(b). If a and b are both even, then so is 

a+b and f(a+b) =1, f(a)=1=f(b). If both a and b are odd then a+b is even and 

f(a+b) = 1 = (–1)(–1) = f(a).f(b) 

Similar argument can be made when one of a and b is even and the other is odd. 

2.2.8. 0 is the identity in Zn and hence 

ker f = {a  /a = qn for some q  } = nZ. 

2.2.9: Let a, b . Write a = q1n +r1 and b = q2n+r2, where q1, q2, r1, r2  , 0   r1 < n and 0 

  r2 < n. Then f(a) = r1 and f(b)= r2. Also we have 0  r1+ r2 < 2n. We shall distinguish two 

cases 

Case (i): Suppose r1 + r2 < n.  

Then a+b = (q1 + q2)n + ( r1 + r2) and 

f(a+b) = r1 + r2 = r1 +n  r2 = f(a) +n f(b) where +n is the addition modulo n. 

 

Case (ii) : Suppose r1+ r2   n. Then 

a+b = (q1+ q2+1)n + (r1+ r2–n) and 0    r1+ r2–n < n and hence f(a+b) = r1+ r2–n 

= r1+n r2 = f(a) +n f (b) 

Thus f is a homomorphism. 

2.2.10. Ker f = {e} 

2.2.11. Ker f =  
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2.2.12. ker f = {n  /an=e} = {0} if a is of infinite order; that is an  e for all n  0 and                

ker f = n , if a is of order n; that is n is the smallest positive integer such that  an = e. 

2.2.15: For any a, b  G,  

gof(ab) = g(f(ab)) 

            = g(f(a)f(b))       (since f is a homomorphism) 

            = g(f(a) g(f(b))   (since g is a homomorphism) 

            = (gof) (a) (gof) (b)  

Therefore, gof is a homomorphism. 

2.3.2: (2.2.2) The identity in G1 is 0 and hence 

Ker f = {a  G / f (a) = 0} 

= {a   / a > 0 and log2 a = 0} = {1} 

Therefore,  ker f = {1} 

2.4.4. (i) The identity mapping of G onto G is an isomorphism and hence G   G 

(ii) If G  H, then there exists an isomorphism f: G  H and, in this case, f–1
: H  G is an 

isomorphism (2.4.3(i)) and hence H  G. 

(iii) This follows from 2.4.3(ii) 

2.5.4. Let f: GG/K be defined by f(a) = aK for any aG. Then f(N) = N/K which is a 

normal subgroup of G/K and by 2.5.3 theorem, G/N  (G/K)/(N/K). 

2.5.5. Since N is a normal subgroup G, NK = KN and hence KN is a subgroup of G. If x  K 

and a K  N then xax–1  K  N and hence K  N is a normal subgroup of K. Define                      

f : K → KN/N by f(a) = aN. Then f is an epimorphism and ker f = K  N and by 2.5.1 

Theorem, K/Ker f  KN/N. Hence K/ K  N  KN/N. 

2.6.5. Let  be the 3 -cycle (123) in S3.  Then 2 = (1 3 2) and 3 = id .{id ,  , 2} is the   only 

subgroup of order 3 in S3. 

2.6.6. There are three subgroups , each of order 2 in S3 and these are  

H1 = {id ,(1, 2)}; H2 = {id ,(2,3)} and H3 ={id ,(3,1)}. 

Let  =(1,2) ,  = (2,3) and  =(3,1), Then H1  1 = H3, 

 H2 1 = H3 and  H1 1 = H2. 
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LESSON - 3 

AUTOMORPHISMS 
OBJECTIVES: 

Objectives of this lesson are to 

 define the notion of an automorphism and give certain examples. 

 prove that the set of all automorphisms of a group G is it self a group under the 

composition of mappings. 

 define the concept of an inner automorphism and prove that the group of inner 

automorphisms of a group G is isomorphic to the quotient group G/ (G ) , where (G ) is 

the centre of G. 
 determine all the automorphisms of a given cyclic group. 

STRUCTURE:  

3.1 Introduction 

3.2  The group of automorphisms 

3.3  Inner automorphisms. 

3.4  Automorphisms of a cyclic group 

3.5  Model examination questions 

3.6  Summary 

3.7  Technical terms 

3.8  Answers to self assessment questions 

3.9  Suggested Readings 

 

3.1: INTRODUCTION:  

In the previous lesson, we have learnt the concepts of a homomorphism and a 

bijective homomorphism, which is called an isomorphism. When an isomorphism is from a 

group G onto itself, it is called an automorphism of G. Automorphisms play an important role 

in the structure theory of groups. For any group G, the automorphisms of G form a group 

under the composition of mappings. On several occations, the structure of the group of 

automorphisms of G reveals that of the group G itself. In particular, when G is an infinite 

cyclic group, then there are eaxctly two automorphisms and when G is a finite cyclic group 

of order n, then there are exactly  (n)   number of automorphisms of G which is also equal 

to the number of generators of G. In this lesson, we shall have a detailed discussion on these 

topics. 

3.2: THE GROUP OF AUTOMORPHISMS: 

Isomorphisms of a group G onto itself are called automorphisms. In the following 

theorem  we shall prove that the automorphisms of a given group form   a group again. First, 

let us have the formal definition of an automorphism. 

3.2.1. Definition : Let G be a group. Any bijective homomorphism of G onto G itself is  called 

an automorphism of G. The set of all automorphisms of G will be denoted  by Aut(G). 

Note that the homomorphism given in example 2.2.5 is injective but not surjective 

and that given in example 2.2.8 is surjective but not injective. This says that surjective 

(onto) and injectivity (one-one) are both necessary for a homomorphism to become an 
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isomorphism or an automorphism. 

3.2.2. Theorem: Let G be a group. Then the set Aut(G) of all automorphisms of G forms a 

group under the composition of mappings. 

Proof : Let f, g  Aut(G). Then f and g are automorphisms of G and so f and g are  

isomorphism of G. Hence fog is an isomorphism and fog is an automorphism of G. Thus, the 

composition of mappings is a binary operation on the set Aut(G). Clearly, we have fo(goh) = 

(fog)oh for all f, g, h  Aut(G). Also, the identity mapping iG, defined by iG (a) = a for all a 

 G, is an automorphism of G and hence iG Aut(G) and for any f  Aut(G). iG o f = f = fo 

iG. Therefore iG is the identity element of Aut(G). Further, for any f  Aut(G), f being a 

bijection, its inverse f–1 exists and f–1 is also an automorphism (2.2.3(1)). Since fof–1 = iG = f–1of, 

it follows that f–1 is the inverse of f in Aut(G). Thus Aut(G) is a group under the composition 

of mappings.  

Every element of a group G has an inverse in G and hence a  a–1 can be treated as a 

function of G into G. If a–1 = b–1 for any a, b  G, then a = (a-1)-1
  

= (b-1)-1= b  

and for  any y  G, y–1  G and  (y-1)-1
  

= y . That is the mapping a  a
–1 is a homomorphism 

and hence an automorphism of G.   

3.2.3. Self Assessment Question: Prove that the following are equivalent for any group G. 

(i)   G is abelian 

(ii)  The mapping f : G  G, defined by f(a) = a–1 for any a G is an automorphism of G 

(iii) (ab)–1 = a–1b–1 for any a, b  G 

(iv) (ab)2 = a2b2 for any a, b G 

(v)  There exist three consecutive integers n such that (ab)n = anbn for all a, b G  

3.2.4. Theorem: Let G be a group and a G. Let f be an automorphism of G. Then  o(f(a)) = 
o(a). 

Proof : Let f be an automorphism of G and a G. If a is of order zero. Then an  e for any  positive 

integer n and hence f(a)n=f(an)  f(e) =e. (Since f is an automorphism and an  e) 

So that f(a) is also of order zero. Now, suppose o(a) > o and let o(a) = n. Then n is the least 

positive integer such that an = e.  

We have f(a)n = f(an) = f(e) = e 

And, for any positive integer m < n, am  e and hence f(a)m = f(am)  f(e) =e (since f is an 

automorphism) Thus n is the least positive integer such that f(a)n=e. Therefore, O(f(a)) = O(a). 

3.2.5. Self Assessment question: If f : G  G| is an isomorphism of groups and a  G, then 

prove that the orders of a and f(a) in G and G| respectively are same. 

3.3: INNER AUTOMORPHISMS: 

In this section we shall introduce a special type of automorphisms known as inner 

automorphisms. With each element a in a group G, we shall associate an  automorphism of G 

as defined in the following. 
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3.3.1. Theorem: Let G be a group and a  G. Define f fa : G  G  by fa(x) = axa–1 for any x  

G. Then fa is an automorphism of G. 

Proof: Let G be a group and a  G. 

Define fa: G G as fa(x) = axa–1 for any x G. 

Now we show that fa is an automorphism of G. 

For any x, y G, we have fa (xy)= a(xy)a–1 = (axa–1)(aya–1) = fa (x) fa (y).     

And hence fa is a homomorphism.  

Also, fa (x) = fa(y)  axa–1  aya–1  x =y ( By the cancellation laws). 

Therefore fa is one-one. Finally to prove that fa is a surjection. Let us take y G. 

Then a–1ya G and fa (a–1ya) = a(a–1ya)a–1 = y. Therefore fa is a surjection also. 

Thus fa is an isomorphism of G onto G; that is, fa is an automorphism of G. 

Note that the automorphism defined in the above theorem is called an inner         

automorphism of G and we denote the set of all inner automorphisms of G by I(G). 

3.3.2. Definition: For any group G, the centre of G is defined as the set  (G) = {a  G / ax = 

xa for all x G}. 

3.3.3. Self Assessment Question: Prove that the centre (G) of a group G is a normal                     

subgroup of G. 

3.3.4. Theorem: For any group G, the set I(G) of inner automorphisms of G is a group under 

the composition of mappings and G/ (G )   I(G) where (G) is the centre of G. 

Proof: Let G be a group and Aut(G) be the set of all automorphisms of G. We know that 

Aut(G) is a group under the composition of mappings (see 3.2.2). We shall prove that the set 

I(G) of all inner automorphisms of G is a subgroup of Aut(G). For any a  G, we have fa  

I(G). 

If fa, fb  I(G) with a, b  G, then (fa o fb ) (x) = fa(bxb–1) = a(bxb–1) a–1= (a b) x (ab)–1= fab(x)  

fe (x) = exe–1 = x = id(x)  

Hence faofb = fab and fe = id, the identity map. 

Therefore fa  o  =  = fe =  = o fa and hence fa
-1

 = . 

Now fa  o fb
-1

 = fa  o =   I (G ). 
Thus I(G) is a subgroup of Aut(G) 

Now, let us define  : G  I(G) by  (a) = fa for any a G. 

Then  (ab) = fab=faofb=  (a)  (b) for any a, b G. Therefore  is a homomorphism. Also, 

clearly  is a surjection (since any element of I(G) is of the from fa for some a G) 

Now by the fundamental theorem of homomorphisms (2.5.1),  

we have G/Ker    I(G) 

Let us compute Ker  . By the definition of the kernel,  

we have        Ker    = {a G/ (a) = identity in I(G)} 

                                       = {a G/fa(x) = x for all x G} 
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                                       = {a G/axa–1 = x for all x G} 

                                       = {a G/ax = xa for all x G} = (G ) 

Thus G/ (G )   I(G). 

3.3.5. Self Assessment Question : For any group G, prove the following. 

(i) G is abelian if and only if I(G) is trivial 

(ii) I(G) is a normal subgroup of Aut(G). 

3.4: AUTOMORPHISMS OF A CYCLIC GROUP: 

Let us recall that a group G is said to be cyclic if there exists an element a generating 

G, that is, G = < a > = {an/n   }. In this case, a is called a generator of G. 

There can be more than one generator of a group G. For example 1 and –1 are both 

generators of the group  of integers under addition. In this section we  shall determine all the 

automorphisms of a cyclic group and prove that there is a one-to-one correspondence between 

the automorphisms of a cyclic group G and the generators of G. Let us begin with the 

following : 

3.4.1. Theorem: Let G be a group, f an automorphism of G and a  G. Then a is a  

generator of G if and only if f(a) is a generator of G. 

Proof : Given that G is a group and f is an automorphism of G and a G. Suppose      a is a 

generator of G. Then G = < a > = {an / n   }. 

Now f is an automorphism and in particular, f is a surjection, so that f(G) = G ..   

Now we have G = f(G)= {f(a)n / n   }= < f(a)> 

Therefore f(a) is a generator of G. 

Conversely suppose that f(a) is a generator of G. Since f is an automorphism, f–1 is also an 

automorphism of G. 

Since f–1 is an automorphism and since f(a) is a generator of G, we have f–1(f(a)) is a 

generator of G and so a is a generator of G. 

In the following, we shall determine all the automorphisms of a cyclic group. First, 

let us recall that for any integer n > 1, the set 

Un = {r   +/r < n and r and n are relatively prime} is a group under multiplication modulo n. 

For example,  

U2 = {1}  
U3 = {1,2} 

U4 = {1,3} 

U5 = {1,2,3,4} 

U12 ={1,5,7,11} 

First, let us take up the case of a finite cyclic group. 

3.4.2. Self Assessment Question: Determine the sets U30 and U13. 

3.4.3. Theorem: Let G be a finite cyclic group of order n > 1 and G = < a >. Then 

(1) An element b G is a generator of G if and only if b = ar for some r Un (i.e, 0 < r < n and r 

is relatively prime to n ) 
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(2) Aut(G)  Un 

Proof: Let G be a finite cyclic group of order n>1 and G = < a > 

Let b G. Suppose b = ar for some r Un . Since r is relatively prime to n, these exist integers 

 and  such that r + n = 1 and hence  

a =  =  .  =  (Since an = e and b = ar)  

Since G = < a >, every element of G is of the form am, m  and hence it follows that any 
element of G is of the form bk,, k  . Thus G = <b> and hence b is a generator of G. 

Conversely suppose  that b is a generator of G. Since G = < a >  and o(G)=n,    we have    

b = ar for some 0 < r < n. Also a  G = <b> and hence a = bs for some integer s. Now          

a1–rs = a.(ar)–s = ab–s = e (since a = bs) and hence o(a) divides 1–rs. Since o(a) = n, it follows that 

nt =1–rs or 1= nt + rs, which implies that r is relatively prime to n; that is, r Un and b = ar. 

2) Now we show that Aut (G)  Un. 

For any r Un, define gr : G  G by gr(x) = xr for all x G 

Then clearly gr is a homomorphism. We shall verify that gr is a bijection, so that  it becomes 

an automorphism of G. Since r is relatively prime to n, there exist integers s and t such that 

rs + nt=1. 

Now for any x, y G, 

gr(x) = gr(y)  xr=yr  (xr)s = (yr)s and 

(xn)t = e = (yn)t  xrs+nt = yrs+nt  x=y (since rs + nt = 1)    

Therefore gr is a injection. Further, by (1) above, 

G = < ar > and we have  

y G  y = (ar)m for some integer m. 

 y =(am)r = gr (a
m) and am G. 

Therefore gr is a surjection and hence gr is an automorphism of G.  

Now, define the mapping  : Un  Aut(G) by 

 (r) = gr for any r Un. First we show that  is a homomorphism 

Note that o(a) = n and for any m  , am = e if and only if n divides m. For any r, s  Un, let        

rs = t, where t is the remainder obtained by dividing the usual product      rs with n; i.e, if             

rs = qn +t, o  t <n, then rs = t. Also note that xn = e for all x G. 

Now, (gr o gs )(x) = gr (gs (x) ) = (xs)r = xrs = xqn + t = (xn)q. xt = e.xt = xt = grs (x) for all x G.   

Therefore gr o gs = grs and hence  is a homomorphism of Un into Aut(G). 

 Now we show that  is an injection. 

For any r, s  Un, consider  (r) =  (s)   gr = gs 

 gr (a) = gs(a)  ar =as  ar–s = e 

 r – s = o (Since r–s < n and o(a) = n) 

 r = s 
Therefore  is an injection. 

No we show that  is a surjection. 

Let f Aut(G). Then by 2.4.1 Theorem, f(a) is a generator of G. BY (1), f(a) = ar for some 
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r Un. If x = am G, then f(x) = f(am)=f(a)m = (ar)m= (am)r= xr = gr (x). 

Therefore f = gr =  (r) and hence  is a surjection. Thus  is an automorphism of G and so        

Aut (G)  Un. 

3.4.4. Self Assessment Question: Determine all the automorphisms of the group  10 of integers 

modulo 10. 

3.4.5. Theorem: Let G be an infinite cyclic group. Then Aut(G) consists only two 

automorphisms, namely, the identity mapping and the map x  x–1. 

Proof : Given that G is an inifinite cyclic group. Then G = < a > for some a  G and an  e 

for all non-zero integers n. Let f be an automorphism of G. 

Then f(a) G = < a > and hence f(a) = an for some n . By 3.4.1 theorem, f(a) is a generator 

of G and G = < f(a) >. 

Therefore a = f(a)m=(an)m = anm and hence nm =1 which implies that either n=1=m or n = –1 = 

m. Therefore f(a) =a or f(a) = a–1. 

If f(a) = a, then f(x) = x for all x G and hence f is an identity mapping.  If f(a) = a–1, 

then f(x) = x-1 for all x  G. Thus, the identity mapping and the mapping  x  x–1 are the only 

automorphisms of G. 

3.4.6. Self Assessment Question: Determine all the automorphisms of the group Z of 

integers. 

3.4.7. Self Assessment Question: If G is an inifinite cyclic group, prove that Aut(G)   2. 

 

3.5. MODEL EXAMINATION QUESTIONS: 

3.5.1. Prove that the set Aut(G) of all automorphisms of a group G forms a group under 

composition of mappings. 

3.5.2. Define the notion of the centre (G )of a group G and prove that G/ (G ) is 

isomorphic to the group I(G) of all inner automorphic of G. 

3.5.3. For a cyclic group G of order n, prove that Aut(G)  Un. 

3.5.4. Determine all the automorphisms of an infinite cyclic group. 

3.6 SUMMARY:  

In this lesson, we have learnt the concept of an automorphism of a group G and 

proved that the set Aut(G) of all automorphisms of G is a group under the compositon of 

mappings. Also, we have defined the notion of an inner automorphism of a group G and 

proved that these form a group which is isomorphic to the quotient group G/ (G ) , where 

(G ) is the centre of G. Finally, we have completely determined all the automorphisms of a 

cyclic group. In particular, if G is a cyclic group of order n, we have proved that Aut (G) is 

isomorphic to  the group Un of positive integers less than n and relatively prime to n. 

 



Algebra  3.7   Automorphisms  

3.7  TECHINICAL TERMS:   

 Automorphism  

 Inner Automorphism  

 The centre (G)  

 Cyclic group   

 The group Un  
 The group n 

3.8  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

3.2.3: (1)  (2) 

For any a, b G, consider f(ab) = (ab)–1 = b–1a–1 

= a–1b–1 ( since G is abelian) 

= f(a) f(b) 

Therefore f is a homomorphism 

Let a G. Then a–1 G. Consider f(a–1) = (a–1)–1= a.  

Therefore f is a surjection (onto) 

Further, for any a, b G, consider f(a) = f(b) 

 a
–1 = b–1  a = b 

Therefore f is an injection. Thus f is an automorphism of G.    

(2)  (3). 

For any a, b G, consider (ab–1) = f(ab) = f(a) f(b) = a–1b–1 

There fore (ab)–1 = a–1b–1  

(3)  (4) 

For any a, b  G, consider (ab) = (a–1)–1(b–1)–1 = (a–1b–1)–1 = (b–1)–1 (a–1)–1 = ba 

Consider a2b2 = a(ab)b = a(ba)b = (ab)2      

so a2b2 = (ab)2 

(4)  (5) 

Let a, b  G, we have (ab)0 = e = e.e = a0b0 

(ab)1=a.b = a1.b1 and (ab)2 = a2b2 

There fore 0, 1 and 2 are three consecutive integers n    

such that (ab)n = anbn for any a, b G 

(5)  (1) 

Let n be an integer such that 

(ab)n-1=an-1 bn-1, (ab)n = anbn and (ab)n+1 = an+1 bn+1 for all a, b  G. 

Now for any a, b G, consider an–1(abn-1)b = anbn 

= (ab)n = (ab)n–1(ab) = an–1(bn–1a)b 

 abn-1=bn–1a (By cancellation laws) 

 similarly abn = bna 

Now, consider (ab)bn–1 = abn  = bna = b(bn–1a) =  b(abn–1) 

= (ba)bn–1  ab = ba (cancellation laws) 

Hence G is abelian. 

3.2.5: Suppose f: GG1 is an isomorphism of groups and a  G. Now we show that the order 

of a and the order of f(a) are the same. 

Assume that o(a) = n and o(f(a)) = m. Then an=e and (f(a))m = e1, where e and e1 are the 

identities in G and G1 respectively 

Since f is an isomorphism of G onto G1,  

we have at = e  f(at) = f(e)=e1  f(a)t =e1 for any positive integer t →(1) 
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From (1), we have an =e  f(a)n = e1  

Therefore m/n (since o(f(a)) = m 

Also from (1), we have (f(a))m  = e1  am = e  

Therefore n/m (since o(a) = n) 

Hence m = n, that is, o(a) = o(f(a)). 

3.3.3: Consider the centre  (G )of the group G. Now we show that (G ) is a normal subgroup 

of G. 

 (G)   since e  (G) 

Now for any a, b  (G ) and x G, consider  (ab)x = a(bx) 

= (bx)a = (xb)a = x(ba) = x(ab)  

Therefore ab  (G ) 

Now let a  (G )  ax = xa 

Consider ax = xa  axa–1 = xaa–1 = xe = x 

 axa–1 = x  a
–1axa–1 = a–1x  exa–1 = a–1x 

 xa–1=a–1x  

Therefore a–1  (G ) 

Thus Z(G) is a subgroup of G. 

Now for any a  (G )and g  G,  

we have gag–1 = agg–1 = a  (G )           

Hence (G )is a normal subgroup of G. 

3.3.5.  Let G be any group 

(i) G is abelian  ab = ba for any a, b  G 

 G = (G )  G/ (G ) is trivial 

 I(G) is trivial (by 3.3.4) 

(ii) fa  I(G) and h  Aut(G) 

Then for any x G, (ho fa oh–1)(x) = h(fa (h–1(x)) 

= h(ah-1(x)a–1) = h(a) h(h–1(x) )h(a–1) 

= h(a) xh(a)–1= fh(a) (x)  

Therefore hofa oh–1 = fh(a)  I(G) 

Thus I(G) is a normal subgroup of Aut (G). 

3.4.2: U30 = {1,7,11,13,17,19,23,29}  
           U13 = {1,2,3,4,5,6,7,8,9,10,11,12} 

3.4.4: Consider U10 ={1,3,7,9} 

By 3.4.3 theorem (2), Aut ( 10)   U10. Since o(U10)=4, 

there are four automorphisms of 10 . These are x  x, x  x3, x  x7 and x  x9
 

Note that 9x is the inverse of x for any x  10. 

3.4.6. By 3.4.5 theorem, the only automorphisms of  are the mappings x  x and x  –x        

(since  is infinite cyclic groups). 

3.4.7. Let G be an infinite cyclic group.Then Aut (G) = {id, f} where id is the identity 

mapping of G and f is defined by f(x) = x–1 for all x G. Any group of order 2 must be 

isomorphic to 2 and hence Aut(G) = 2 . 
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LESSON -4 

CAYLEY’S THEOREM 
OBJECTIVES: 

Objectives of this lesson are to 

 prove the bisections of any set onto itself from a group. 

 state and prove the Cayley’s theorem.  

 quote certain important applications of Cayley’s theo rem. 

STRUCTURE: 

4.1 Introduction 

4.2 Group of permutations 

4.3 Cayley’s theorem 

4.4 Applications of Cayley’s theorem 

4.5  Model examination questions 

4.6  Summary 

4.7  Technical terms 

4.8  Answers to self assessment questions 

4.9  Suggested Readings 

4.1: INTRODUCTION: 

Most of the groups when they were first identified, were in the form of a set of 

transformations of a particular mathematical structure. Most finite groups appeared as groups of 

bijections of an n element set onto itself for some positive integer n. It is known that the S(X) 

of all bijections of a set X onto itself forms a group under the usual composition of mappings. 

The English mathematician Cayley’s first noted that any abstract group can be viewed as a 

subgroup of the group S(X) for a suitable set X. In this lesson, we shall prove this theorem of 

Cayley and derive certain important consequences. 

4.2: GROUP OF PERMUTATIONS: 

The Cayley’s theorem states that any group can be identified with a subgroup of the 

group of permutations on a suitable set. Before taking up the proof  of the Cayley’s theorem, 

we shall first prove that the permutations on any set from a group. Let us begin with the 

following. 

4.2.1. Definition: For any non-empty set X, any bijection of X onto itself is called a 

permutation or symmetry on X. The set of all permutations on X will denoted by A(X).   

4.2.2. Theorem: For any non-empty set X, A(X) is a group under the composition of 

mappings. 

Proof: Let us recall that an injective (one-one) and surjective (onto) function is called a 

bijection and that the composition of two dijections is again bijection. 

Now, let X be a non-empty set. Then the composition ‘o’ is a binary operation on A(X). 

Clearly ‘o’ is an associative operation. Also, the map id: X  X, defined by id(x) = x for all x 

 X, acts as the identity element in A(X); that is, f o id = f = id o f 

For any f  A(X). Further, for any bijection f: XX, we can define f-1: XX by               
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f-1(y) = x if and only if f(x) = y (Since f is a bijection, there exists unique x in X  such that    

f(x) = y). Then, clearly f-1 is a permutation on X and f o f 
-1 = id = f -1 o f 

Therefore, each element of A(X) has inverse. Thus A(X) is a group under the 

composition o of mappings. 

4.2.3. Self Assessment Question: List all the elements of A(X), where X = {1, 2, 3}. 

4.3: CAYLEY’S THEOREM: 

In this section, we shall prove that any abstract group can be identified with a group 

of permutations on a suitable set X (that is a subgroup of A(X)). 

4.3.1. Theorem (Cayley’s Theorem): Any group is isometric to a group of permutations on 

a set. 

Proof: Let G be a group, that is, G is a non-empty set together with a binary operation 

satisfying the axioms of group. Take X to be the set G, ignoring the binary operation on it. For 

each a  G, define ta:X X by ta (x) = ax for all x  X. Note  that X = G and the product ax in G 

is written as ax. Then ta is a bijection; for   

ta (x) = ta (y) for any x, y  X 

 ax = ay  

 x = y 

(by cancellation laws) and, for any y X, a-1y X. And ta (a
-1y)= a(a-1y) = y     

Therefore ta A(X), the group of permutations on X. 

Let H = { ta /a G} 

we shall prove the following for any a, b G: 

(1) ta o tb = tab 

(2) te = id, the identify map on X 

(3) ta
 -1 =  

For any x G, consider   

ta o tb (x) = ta (tb(x)) = a(bx) = (ab)x = tab(x) 

Therefore, ta o tb = tab. 

Also te (x) = ex = x = id(x) for any x G and hence te = id 

Now, ta o  =  = te = id =  =  o ta and 

hence ta
-1 =  

These (1), (2) & (3) imply that H is a subgroup of A(X)  

We shall prove that G  H 

Define f:GH by f(a) = ta for any a G 

Since every element in H is of the form ta for some a G, f is a surjection. 

Also, by(1) above, f(ab) = tab = ta o tb = f(a) o f(b) for any a, b G and hence f is a     

homomorphism.  Also, for any a, b G, f(a) = f(b) that implies ta  =  tb 

that implies ta (e) = tb(e)  ae = be  a = b. 
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Therefore f is an injection, Thus f: G  H is an isomorphism and hence G is isomorphic to 

the subgroup H of A(X). 

The above theorem enables us to identify any abstract group as a more concrete object, 

namely, as a group of permutations. However, there are certain short comings; for if G is a 

group of order n, then the group A(X), considered in the proof of the above theorem, has n! 

elements. Our group G of order n is some     what lost in the group A(X). Which is huge in 

comparison to G. Now, one can ask  the question: Can we find a more economical X so as to 

find smaller A(X) in which G can be identified This is accomplished in the following, which 

is actually a generalization of theorem 4.3.1 

4.3.2. Theorem: Let G be a group and H a subgroup of G. Let X be the set of all left cosets 

of H in G. Then there is a homomorphism f of G into A(X) such that the kernel of f is the 

largest normal subgroup of G which is contained in H. 

Proof: Given that G is a group and H is a subgroup of G. Also given that X = {xH /x  G} 

For any a  G, define ga : X X by ga (xH) = (ax)H for any xH  X. First     notice that, ga is well-

defined, in the sense that ga (xH) does not depend on x, but it depends on the whole coset xH, 

in which x is a particular element. 

For xH = yH  

 x
-1y H  

 (ax)-1(ay) = x-1a-1ay   = x-1y H  

 (ax)H = (ay)H  

 ga (xH) = ga (yH)  

Therefore ga is well defined Now we shall verify that ga is a bijection of X onto itself 

For any xH, yH belongs to X, consider 

ga (xH) = ga (yH)  

 (ax)H = (ay)H  

 (ax)-1(ay) H  

 x
-1y = (ax)–1(ay) H 

xH = yH  

Therefore ga: XX is an injection.  

Also, for any yH X (a-1y)H X and 

ga ((a-1y)H) = (a(a-1y))H = yH 

Therefore ga is a surjection and hence ga is a permutation on X; that is ga A(X) for each a 

G. Now define f: G  A(X) by f(a) = ga for any a G For any a, b G and xH  X, we have 

(ga  gb)(xH) = ga(gb(xH)) = (a(bx))H = (ab)xH = gab (xH) and hence ga  gb = gab This says that 

f(ab) = f(a)f(b). Therefore f is a homomorphism. Now, let us evaluate  kernel of f. 

ker f = {a G / f(a) = id} = {a G/ ga = id} 

        = {a G / ga (xH) = xH for all xH X} 

        = {a G / axH = xH for all x G} 

        = {a G / x-1ax H for all x G} 

Being the kernel of a homomorphism, Ker f is a normal subgroup of  G (see 2.3.3) and clearly 

ker f  H( for, a  Ker f  x-1ax  H for all x  G  e-1ae  H  a  H) 

Also, if N is a normal subgroup of G which is contained in H, then N  Ker f (for, a  N       

x-1ax  N  H for all x  G  a  Ker f). 
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Thus, ker f is the largest normal subgroup of G which is contained in H. 

4.3.3.Self Assessment Questions: Deduce Cayley’s theorem from the above theorem  4.3.2. 

4.4: APPLICATIONS OF CAYLEY’S THEOREM: 

We shall apply Cayley’s theorem of the previous section in proving certain results on 

the structure of certain finite groups. Let us begin with the following. 

4.4.1. Definition: A group G is called simple if it has no non trivial normal subgroups;  that is, 

if {e} and G are the only normal subgroups of G. 

4.4.2. Examples: The trivial group {e} is clearly simple. Also, any group of order a prime is 

simple, for if G is a group of order p and p is prime and if H is a subgroup of G, then O(H) divides 

O(G) = p (by Lagrange’s theorem) and hence O(H) = 1 or  p. So that H = {e} or H = G. 

4.4.3. Self Assessment Question: For any positive integer n>1, prove that the group Zn is 

simple if and only if n is a prime number. 

Let us recall that the order of a subgroup H of a finite group G divides the  order of G 

and O(G)/O(H) is equal to the number of distinct left (right) cosets of      H in G. Also, O(G)/O(H) 

is known as the index of H in G and is denoted by i(H). We shall use theorem 4.3.2 in proving 

the following. 

4.4.4. Theorem: Let H be a proper subgroup of a finite group G such that O(G) does not 

divide i(H)!. Then H contains a non trivial normal subgroup of G and in particular, G is not 

simple. 

Proof: Given that H is a proper subgroup of a finite group G such that O(G) does not divide 

i(H)!. Let X be the set of all left cosets of H in G. The  = i(H) and O(A(X)) = i(H)!. By 

theorem 4.3.2, there exits a homomorphism f :G  A(X) such that ker f is the largest normal 

subgroup of G which is contained in H. Since  H  G and ker f  H, it follows that Ker f is a 

proper normal subgroup of G. If ker f = {e}, then f is a monomorphism and hence G  f(G) and 

f(G) is a subgroup of A(X) and therefore O(G) = O(f(G)) divides O(A(X)) = i(H)!, which is a 

contradiction to the hypothesis. Therefore Ker f  {e}. Thus H contains a non trivial normal 

subgroup of G(namely, Ker f) which implies that G is not simple. 

4.4.5. Example: Suppose G is a group of order 36 and G has a subgroup H of order 9. 

Then i(H) =  = 4 and hence O(G) does not divide i(H)!. Therefore there is a nontrivial 

normal subgroup of G contained in H(by theorem 4.4.4) and G is not  simple. 

4.4.6. Self Assessment Question: Suppose G is a group of order 175 and G has a 

subgroup of order 25. Then prove that G is not simple. 

4.4.7. Example: Let H be a subgroup of order 11 in a group G of order 99.Then i(H) =      

=  = 9 and O(G) does not divide i(H)!. Then, by theorem 4.4.4, there exists a non trivial 

normal subgroup N of G which is contained in H. Since O(H) = 11, which is a prime number 

and since O(N) is a divisor of O(H), it follows that O(N) = O(H) (note that O(N) > 1, since N is 

non trivial) and hence N = H. Thus H is a normal sub group of G. To summaries, any subgroup 

of order 11 in a group of order 99 is normal. 
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4.4.8. Self Assessment Question: Prove that any subgroup of order 13 in a group of order 

65 is normal. 

4.4.9. Theorem: Any non abelian group of order 6 is isomorphic to A(X), where X is a 

three element set. 

Proof: Let G be a non-abelian group of order 6. Then G has an element of order 2(See 4.4.10). 

Let a G be an element of order 2. That is, e    a G and a2 = e. 

Put H = {e, a} 

Then H is a subgroup of order 2 in G and i(H) =  = 3. Let X be the set of left cosets of H in 

G. Then A(X) is a group of order 3!. (since X has 3 elements); that is, o(A(X)) = 3!. By 

Theorem 4.3.2, there is a homomorphism f: G A(X) such that ker f is the largest normal 

subgroup of G which is contained in H. In particular, Ker f  H and Ker f is a normal 

subgroup of G. Since O(H) = 2, it follows that ker f = {e} or Ker f = H. We shall argue that    

ker f  H. 

Otherwise, suppose that Ker f = H. Then H is a normal subgroup of G and hence xax-1 H for 

all x G. But xax-1  e (since a  e) and therefore xax-1 = a. This implies that xa = ax for all x G. 

Therefore a Z(G), the centre of G and H  Z(G)  G. 

Since O(H) = 2, we have that 2 divides O(Z(G)) and O(Z(G)) is a divisor of O(G) = 6. From 

these, it follows that O(Z(G)) = 2 or 6. But O(Z(G))  6 (for, since G is a non abelian). Z(G) is a 

proper subset of G. Therefore O(Z(G)) = 2    and H = Z(G). Now, choose b G such that b H 

and consider the normalizer N(b) of b; 

i.e, N(b) = {x G/bx = xb} 

Then Z(G) is a proper subgroup of N(b)(Since b N(b) and b  H = Z(G)) and hence 2 is a 

proper divisor of O(N(b)) and O(N(b)) is a divisor of O(G) = 6. Therefore O(N(b)) = 6           

= O(G) and hence G = N(b) so that bx = xb for all x G; that is, b Z(G) = H, which is a 

contradiction to the choice of b.Thus Ker f  H and hence Ker f = {e}. Therefore, f is a 

monomorphism of G into A(X) and hence G f(G)  A(X) 

But O(f(G)) = O(G) = 6 = O(A(X)) 

Therefore, f(G) = A(X) and hence f :G A(X) is a surjection. Thus f is an isomorphism of G 

onto A(X) and G  A(X). 

4.4.10. Self Assessment Question: Prove that any finite group of even order has an element of 

order 2. 

Actually, we prove later a more general result than 4.4.10. If G is a finite group and P 

is a prime number dividing O(G), then G has an element of order p. This is nothing but the 

Cauchy’s theorem (2.6.1) for a general group which will be proved later. However, we can 

try to prove 4.4.10 by elementary  methods. 

4.5. MODEL EXAMINATION QUESTIONS: 

4.5.1. Prove that the set A(X) of permutations on a set X is a group under the    composition of 

mappings. 

4.5.2. State and prove the Cayley’s theorem. 
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4.5.3. Let H be a subgroup of a group G and X be a set of all left cosets of H in G. Then 

prove that there is a homomorphism f of G into the permutation group A(X) such that Ker f 

is the largest normal subgroup of G that contained in H. 

4.5.4. Let H be a proper subgroup of a finite group G such that O(G) does not divide i(H)!. 

Then prove that G is not simple. 

4.5.5. Prove that any non abelian group of order 6 is isomorphic to the group of permutations 

on a three element set. 

4.6  SUMMARY: 

In this lesson, we have learnt that the permutations on any set form a group under the 

composition of mappings and the Cayley’s theorem which states that any group is isomorphic 

to a group of permutations on a suitable set. We have also proved a generalized version of 

cayley’s theorem and applied this to prove that certain groups are not simple; in particular, we 

have proved that any non abelian group of order 6 is isomorphic to the group of permutations 

on a three element set. 

4.7  TECHNICAL TERMS: 

 Permutations 

 Group of permutations A(X)  

 Cayley’s theorem 

 Simple group. 

4.8  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

4.2.3 Given that X = {1, 2, 3}. Consider the maps id, ,  of X into X as are defined below. 

id(1) = 1  (1) = 2  (1) = 2 

id(2) = 2  (2) = 1  (2) = 3 

id(3) = 3  (3) = 3  (3) = 1 

Then id,  ,  A(X) and    ,    and  2 are all other elements in A(X). Thus A(X) = {id,  ,  ,    

,    ,  2 }. 

4.3.3: Take H = {e} in theorem 4.3.2. Then Ker f  {e} and hence Ker f = {e}, so that f is an 

injective homomorphism of G into A(X), where X is the set of all left cosets of H in G. Thus 

G is isomorphic to a group of permutations on a set X. Note that, in this case X is bijective 

with G. 

4.4.3: Suppose n is a prime number. For any subgroup H of Zn, O(H) is a divisor of        

O(Zn) = n and hence O(H) = 1 or n so that H = {0} or H = Zn. Therefore Zn has no nontrivial 

(normal) subgroups and hence Zn is simple. Conversely, suppose that n is not a prime 

number. Then n = mk for m, k > 1. 

Consider H = {m, 2m,……, (k-1)m}. Then H is a non trivial normal subgroup of Zn and 

therefore Zn is not a simple group. 
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4.4.6: Given that G is a group of order 175 and G has a subgroup H of order 25. Then     

i(H) =  = 7 and O(G) does not divide i(H)! By theorem 4.4.4, there exists a non trivial 

normal subgroup N of G such that N  H. Since H  G,  it follows that N  G. Thus G is not 
simple. 

4.4.8. Imitate the argument given in 4.4.7. 

4.4.10: Let G be a finite group and O(G) be even. If G is an abelian group, then         we can use the 

Cauchy’s theorem (2.6.1). If the Cauchy’s theorem (2.6.1) is proved for a arbitrary group, then 

we are through (Infact we prove 2.6.1 for a general group later). But here is an elementary 

proof. 

For each a G, let Aa = {a, a-1}. Then the  Aa’s form a partition of G, that is, for any   

a, b G, either Aa = Ab or Aa  Ab =  and , Aa may consists of only one element(This 

happens when a = a-1). For example Ae = {e}. If, for each a   e,  Aa is a two element set, then 

O(G) = 2m+1 for some positive integer m, which is a contradiction to the hypothesis that 

O(G) is even. Therefore there exists a  e such that Aa is a singleton set; that is, a = a-1. 

Thus a  e and a2 = e and hence a is of order 2. 

4.9  SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 

 
                                                                                                                  

                                                                                                                   Dr.V.Samba Siva Rao 

 

 

 

 

 

 

 

 

 

 

 



LESSON -5 

PERMUTATION GROUPS 
OBJECTIVES:  

Objectives of this lesson are to  

 define the concept of the symmetric group Sn of degree n.  

 prove that any permutation on a finite set is a product of disjoint cycles.  

 define the notion of the alternating group An.  

 prove that An is a normal subgroup of index 2 in Sn. 

STRUCTURE: 

5.1 Introduction 

5.2 The symmetric group Sn 

5.3 Cycles and transpositions 

5.4 The alternating group An 

5.5  Model examination questions 

5.6  Summary 

5.7  Technical terms 

5.8  Answers to self assessment questions 

5.9  Suggested Readings 

5.1: INTRODUCTION: 

  In the previous lesson, we have proved that the set A(X) of permutations      on any set X 

is a group under the composition of mappings and also proved the   Cayley’s theorem which 

state that any abstract group is isomorphic to a subgroup of the permutation group A(X) for a 

suitable set X, infact we have taken X to be the underlying set of the group itself. In particular, 

any finite group is isomorphic to a group of permutations on a finite set. For this reason, the 

groups of permutations on finite sets become prominent in the theory of structure of finite 

groups. In this lesson, we discuss these groups and prove certain important properties. 

5.2: THE SYMMETRY GROUP Sn: 

 If X and Y are sets and if there is a bijection  : X  Y, then the groups A(X) and 

A(Y) of permutations on X and Y respectively are isomorphic under the isomorphism f   

 f   1 . Therefore, if X is a finite set with n elements, then the permutation groups A(X) and 

A(In)  are  isomorphic, where In = {1, 2, 3, …, n}.  

5.2.1. Definition: Let n be any positive integer and In = {1, 2, 3, …, n}. Then the 

permutation group A(In) is called the symmetric group of degree n and is denoted by Sn. 

The elements of the symmetric group Sn are permutations on In = {1, 2, 3, ...., 

n}. If  f  Sn, then f(1), f(2), ....., f(n) are n distinct elements of In and hence In = {f(1), 

f(2),....., f(n)}. For convenience, we describe f  Sn by 

 

f = [  ] 

 

For example f  S9 defined by f(1) = 4, f(2) = 6, f(3) = 9, f(4) = 5, f(5) =   7, f(6) = 1, 

f(7) = 3, f(8) = 2 and f(9) = 8 is denoted by 
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f =  

5.2.2. Self Assessment Question: Let f  S7 be given by     

                                   

f = , then what are f(3) and f(6). 

        If f and g are permutations in Sn, then recall that f  g is defined by (f  g )(i) = f(g(i)) and 

that Sn is a group under this composition of mappings. 

5.2.3. Self Assessment Question: Let f and g  S8 be given by 

                                    f =  and  

g =  then complete f  g                         and f-1 

5.2.4. Self Assessment Question: Compute    in S6 

5.2.5. Note: Let n and m be positive integers and n < m. Define  : Sn  Sm by  

 (f)(i) =  

for any f  Sn. Then as you can easily check,   is a monomorphism. In other words, Sn is 

isomorphic to a subgroup of Sm and hence, we can identify permutations in Sn with those in 

Sm. 

5.2.6. Example:  

The permutation  in S5 can be identified with  in S8. 

5.3: CYCLES AND TRANSPOSITIONS: 

In this section, we shall discuss a special type of permutations, namely cycles. These 

cycles play a very important role in the study of permutations. Infact, we shall prove that any 

permutation can be expressed as a product of disjoint cycles in a unique way, in some sense. 

Let us begin with the following. 

5.3.1. Definition: Let n be any positive integer and a1, a2, ..........., ar be distinct  elements 

in In = {1, 2, …, n} and r > 1. Let f: In  In be defined by    

f(a) =  

Then f is a permutation on In and is denoted by (a1a2...........ar). This is called an r-cycle or a 

cycle of length r. 

For example, the cycle f = (3 4 2 6 8) is a permutation in S8 ( or in Sn for  n  8) 

defined by 

f(3) = 4, f(4) = 2, f(2) = 6, f(6) = 8, f(8) = 3 and f(a) = a for all a {3,4,2,6,8}.  
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Note that the cycles (3 4 2 6 8) and (2 6 8 3 4) are same. 

5.3.2. Self Assessment Question: 

Let f = (5 2 7 3 6 8) a cycle in S
10

. Then what is f(i) for any 1  i  10 ? 

5.3.3. Self assessment question: is the permutation 

f =  a cycle in S9? If so, write f in the cycle notation. 

5.3.4. Definition: Two cycles f = (a1, a2, ..........., ar) and g = (b1, b2, ..........., bs) are said to be 

disjoint if ai  bj  for any 1  i  r and 1  j  s ; that is, f and g are called disjoint if the sets 

{a1, a2, ..........., ar} and {b1, b2, ..........., bs} have no common elements. 

5.3.5. Examples: The cycles (4 6 3 5 2) and (7 1 8 9) are disjoint while the  cycles (5  3  4 2  

8) and (4 1 6 7) are not disjoint. 

5.3.6. Note: If f and g are disjoint cycles in Sn, then f  g = g  f  for, if f = (a1a2...........ar) 

and g = (b1b2...........bs) with ai  bj, then (f  g )(a) = f(a) = a = g(a) = (g  f)(a), if  a  ai and 

a    bj  

and f  g (ai) = f(ai) = ai + 1 = g(ai + 1) = g  f(ai) and similarly  

(f  g) (bj )           = (g  f) (bj ). Thus f  g  g  f. This is to say that any two disjoint cycles 

commute. 

Now we shall prove the following theorem which express any permutation as a 

product of disjoint cycles. Remember that an r-cycle is defined only where r > 1. 

5.3.7.Theorem: Let f be any non-identity permutation in Sn. Then f can be expressed as a 

product of disjoint cycles each of length >1. Also, this expression is unique in the sense that, 

if 

f = 1  2  ……. k  and 

f = 1  2  ……. m 

where i ’s and j ' s are disjoint cycles, then k = m and there is a permutation  in Sm 

such that j  = ( j)  for each 1 j  m . 

Proof: Given that f is a non-identity permutation in Sn. Write T = {a  In / f(a)  a}. 

Since f is not the identity map, it follows that   T  In. Choose a1 T and consider a1, f(a1), f 
2 

(a1),…..  

These are all elements of In and hence these can not all be distinct (Since In is finite). 

Therefore, there exists m < k such that f m(a1) = f k(a1) and hence f k-m(a1) = a1 and k – m > 0. 

Therefore there is a positive integer r such that f r (a1) = a1. Now, let r1, be the least positive 

integer such that f r1 (a1) = a1. Then r1 > 1, since f(a1)    a1. Consider the r1- cycle 

1 = (a1 f(a1) f
2(a1) . . . . . f 

r
1-1 (a1))    

If T1 = { a1,  f (a1),  f 2 (a1) , . . . . ,  f 
r

1-1 (a1)}, then f and 1 are equal on T1. If T1 = T, 

then f = 1. Otherwise, we can choose 2  T   T1 and repeat the above procedure to 

construct an r2-cycle. 
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   = (a2  f (a2) f 2 (a2)..........f r2-1 (a2)), where f r2 (a2 ) =  a2. Again f and 2 are equal on 

the set  T2 = {a2, f ( a2), f 2 (a2).........., f r2-1 (a2)} . Also T1 and T2 are disjoint and hence 1 and 2 
are disjoint cycles. If T1  T2  T, we continue the procedure to construct cycle 3 and so on. 

Since T is finite, this process should terminate at a finite stage; that is, we get that the 

disjoint sets T1, T2,........, Tk and cycles 1, 2 ,............, k such that T1  T2  ............  Tk 

= T. 

              = (ai  f (ai) f 2 (ai)..........f ri-1
 
(ai) ) , f 

ri (ai) = ai 

Ti  =  { ai, f (ai) ,  f 2 (ai),.........., f ri-1
 
(ai) )}  and f and i are same on Ti. All this data 

gives us that    f   1  2  3 ........  k    and 1 , 2 , 3, ........, k are pairwise disjoint 

cycles (note that each i is identity on Tj for i  j) 

To prove the uniqueness, suppose f = 1 2  3 ........  m be another expression of 

f as a product of disjoint cycles  i 's Suppose m  k. Suppose aIn such that 1a   a  ( that 

is, a is involved in the cycle 1 ). Then ja  = a for all j  1 and f(a) = 1 2  3 ........  

m  (a) = 1 a   a and hence there exists j1 such that ( )(a)  a and ja  = a for all j   j1. 

Then it follows that  1   and by the cancellation law, 2  3 ........ m =  j. 

Now, let us continue the above procedure to get j2, j3,........., jm such that i   for    

2  i  m. If m < k, we get that the product of certain  j's is identity, which is a contradiction. 

Therefore m = k and i  ji is a permutation of {1, 2, ......., m} such that i  . Hence the 

theorem is proved. 

5.3.8. Self Assessment Question: Imitate the procedure given in the above proof   to express the 

following permutations in S
12 as a product of disjoint cycles. 

(1) f =  

(2) g =  

(3) h =   

5.3.9. Definition: A 2-cycle is called a transposition. That is, for any a  b  In the 

permutation which maps a to b and b to a and keeping all the other elements of In fixed is 

called a transposition.  

                   For example the 2- cycles (4 5), (3 4) (5 9) are all transpositions. We can easily 

check that any r-cycle  = (a1a2 .........ar) can be expressed as   a1ar)  (a1ar-1)  ......... 

a1a2 which is a product of r-1 number of transpositions. 

5.3.10. Self Assessment Question: Express the cycle (6 9 4 2 7 5) as a product of 

transpositions. 

5.3.11. Theorem: Any permutation in Sn (n  > 1) can be expressed as a product of 

transpositions. 

Proof: Let n > 1 and f be a permutation in Sn. If f is identity, then  
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            f = (a b)  (a b) for any a  ≠ b  In. 

Suppose f is not the identity. By theorem 5.3.7. 

we can write f = 1  2  3….  s where 1,  2,  …., r are cycles and each cycle i is a 

product of transpositions. Therefore f is a product of transpositions. 

5.3.12. Self Assessment Questions: If  is an r-cycle, then prove that O() = r and that the order 

of any transposition is two. 

5.4: THE ALTERNATING GROUP An: 

In the previous section, we have proved that any permutation can be    

expressed as a product of transpositions. But this expression may not be unique as in 

theorem 5.3.7. However, we have the following. 

5.4.1. Theorem: Let f be permutation in Sn and f = 1  2  3 ........  k  and f = 1 2 

 3 ........  m be two representations of f as products of transpositions  i' s and  j' s. 

Then K is even if and only if m is even. 

proof: Since the theorem is trivial for n = 1 or 2, we can suppose that n > 2. Consider 

the polynomial in n-variables given by 

                  p = p(x1, x2, ........., xn) =  i <  j (xi – xj). 

For any permutation f in Sn, let f(p) =  i <  j (xf(i) – xf(j)). 

Clearly f g) (p)   f  g  p  for any f, g  Sn. We can easily verify that  p = –p for any 

transposition  in Sn . 

Now if f   1  2  3 ........ k  = 1 2  3 ........ m, then (–1)kp = f(p) =(–1)mp and 

hence (–1)k = (–1)m which implies that k is even if and only if m is even. 

5.4.2. Self Assessment Question: Let n = 5. In this case, what is the polynomial p  given in 

the above proof. What is f(p) if 

(1) f = (3 5 2 1)  (2 4) 

(2) f = (2 5) 

5.4.3. Definition: A permutation f is called an even permutation if f can be expressed as a 

product of even number of transpositions. f is called odd if it is not even. 

In theorem 5.4.1, we have proved that, if f is a product of even number of transposit ions,  

then it cannot be a product of odd number of transpositions. Therefore, the concept of 

even permutation (5.4.3) is well defined. Also, in view of theorem 5.3.11, any permutation is 

either even or odd. 

5.4.4. Self Assessment Question: Determine which of the following permutations are even? 

(1)     f =  

 

(2) g = (3 5 1 4)  (7 6)  (2 8) 

(3) h = (3 2)  (7 4)  (1 8)  (2 3 8)  (4 6) 

(4)  = (5 8 2 6 4 7) 
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5.4.5. Self Assessment Question: Prove that an r - cycle is even if and only if r is  odd. 

5.4.6. Theorem: For any n > 1, the set of all even permutations is a normal subgroup of 

index 2 in Sn. 

Proof: Consider the group G = {1, -1} under the usual multiplication of real numbers. Let 

An be the set of all even permutations in Sn, n > 1. Then An is a subgroup of Sn.  

Define  : Sn  G by 

 (f) =  

Since f  g is even if and only if either both f and g are even or both of them are odd, it 

follows that  is a homomorphism. Since 1 is the identity element in the group G, we have 

ker    = {f  Sn /  (f) = 1} = An. Therefore An is a normal subgroup of Sn (by theorem 

2.3.3). Also, by the fundamental theorem of homomorphisms (2.5.1), we have  

                Sn / An = Sn / Ker   G. 

Since G is a two element group, so is the quotient group Sn / An .  

Since │ Sn │= │An││ Sn / An │= │An│. 2, it follows that An is of index 2. 

5.4.7. Definition: The group even permutations in Sn is called the alternating group  of degree n 

and is denoted by An. 

5.4.8. Self Assessment Question: For any n > 1, prove that O(An) =  . 

5.4.9. Self Assessment Question: List all the elements of A2, A3 and A4.  

5.5. MODEL EXAMINATION QUESTION: 

5.5.1. Prove that any permutation in Sn can be uniquely expressed as a product of disjoint 

cycles. 

5.5.2. Define the notion of the alternating group An and prove that it is a normal sub group 

of index 2 in Sn. 

5.6  SUMMARY: 

In this lesson, we have introduced the notion of the symmetric group Sn and proved that any 

permutation in Sn can be expressed as a product of disjoint      cycles. Further, we have introduced 

the notion of an even permutation and proved that the set of all even permutations is a normal 

subgroup of index 2 in Sn. 

5.7  TECHNICAL TERMS: 

 Permutation  

 Symmetric group Sn 
 Cycle 

 Transposition  

 Even permutation  

 Odd permutation 

 Alternating group An 
 Disjoint cycles. 
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5.8  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

5.2.2 f(3) = 1 and f(6) = 3 

5.2.3     f  g =  

             f -1 =  

5.2.4  

 
1 

 

 

 
2 

 

 

 
3 

 

 

 
4 

 

 

 
5 

 

 

 
6 

 

 5 6 4 1 3 2 

       

 6 5 2 4 1 3 

  
 

=       

5.3.2 
f = 

 
 

5.3.3 f = (1 5 4 7 9 8 2) 

5.3.8 (1) Choose a such that f(a)  a. For example f(4)  4 and consider 4, f(4),   f2(4), …. so on 

until we get set 4 again. In this example, we have 4, f(4) = 6, f 2(4) = f(6) = 4 

Now we have the cycle (4 6). Take some other than 4 or 6, such that f(a)  a. For      example, we 

can take 5, since f(5)  5. Then 5, f(5) =10, f 2(5) = 9, f 3(5) = 5 

Then we have the cycle (5 10 9). Next pic 3 to set 3, f(3) = 7 f 2(3) = 1, f 3 (3) = 3. 

and we have the cycle (3 7 1). Again pic 8 to set 8, f(8) = 12, f 2(8) = 8. 

and consider the cycle (8 12). The other elements, namely 2 and 11 are fixed by f. Thus we 

have 

(1) f = (4 6)  (5 10 9)  (3 7 1)  (8 12) 

(2) g = (1 8 10 12)  (2 5)  (4 7 9) 

(3) h = (1 5 7 10  6 4 11 3) 

5.3.10 (6 9 4 2 7 5) 

= (6 5)  (6 7)  (6 2)  (6 4)  (6 9) 

5.3.12: Let  = (a1a2..........ar) be an r-cycle. 
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Then r (a1) = r-1( (a1)) = r-1 (a2) = r-2(a3) = ..........=  (ar ) = a1. For any 1  i  r,           

 = (ai.ai+1............,ar . a1. a2......ai) and hence r (ai ) = ai for every 1 i  r. Thus r = id. Also  

i  id for any i < r  and hence O( ) = r. If  is a transposition, then it is a 2- cycle and hence 

O( ) = 2. 

5.4.2: Consider the polynomial x1 

p = p(x1, x2, x3,........., x5) = ( x i -  x j)  

i.e, p = (x1– x2)( x1– x3)( x1– x4)( x1– x5)( x2– x3)( x2– x4)( x2– x5)( x3– x4)( x3– x5)( x4– x5) 

(1) f =  and hence 

f(p) = (x3– x4)( x3– x5)( x3– x1)( x3– x2)( x4– x5)( x4– x1)( x4– x2)( x5– x1)( x5– x2)( x1– x2) 

(2) f = (2 5) and hence 

f(p) = (x1– x5)( x1– x3)( x1– x4)( x1– x2)( x5– x3)( x5– x4)( x5– x2)( x3– x4)( x3– x2)( x4– x2) 

5.4.4 (1) f = (1 3 8 2 7)  (4 6) 

                 = (1 7)  (1 2)  (1 8)  (1 3)  (4 6) 

Therefore f is odd since f is a product of odd number of transpositions. 

 (2) g = (3 5 1 4)  (7 6)  (2 8) 

         = (3 4)  (3 1)  (3 5)  (7 6)  (2 8) 

Therefore g is odd since g is a product of odd number of transpositions. 

 (3) h = (3 2)  (7 4)  (1 8)  (2 3 8)  (4 6) 

         = (3 2)  (7 4)  (1 8)  (2 8)  (2 3)  (4 6) 

Therefore h is even since h is a product of even number of transpositions  

(4)   = (5 8 2 6 4 7) 

          = (5 7)  (5 4)  (5 6)  (5 2)  (5 8), which is a product of odd number of 

transpositions and hence  is odd. 

5.4.5. Any r - cycle  = (a1a2...........ar) can be expressed as  = (a1 ar)  (a1 ar - 1) ......  (a1 
a2) which is a product of r–1 number of transpositions. Thus  is even if  and only if  r – 1 is 

even if and only if r is odd. 

5.4.8: An is a normal subgroup of index 2 in Sn (by 5.4.6) and hence 

2 = O(Sn / An) =  =  therefore  =        

5.4.9: A2 = {id} 

 A3 = {(1 2 3), (2 1 3), id} 

 A4 = {id, (1 2 3), (2 1 3), (2 3 4), (3 2 4), (3 4 1), (4 3 1), (1 2)  (3 4), (1 3)  (2 4), (1 4)  (2      

           3), (1 2 4), (2 1 4)} 
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O(A4) = 12 =  =  

5. 9  SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 

 
                                                                                                                   

                                                                                                            Dr.V.Samba Siva Rao 
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LESSON - 6 

ANOTHER COUNTING PRINCIPLE 
OBJECTIVES: 

The objectives of this lesson are to 

 define the concepts of conjugate class and normalizer of an element of a group.  

 obtain the class equation of a finite group.  

 prove that any group of order pn ( p is prime, n>0) has a nontrivial centre and that    any group 

of order p2 is abelian.  

 state and prove the Cauchy’s theorem for general finite groups.                         

 determine the conjugate classes in Sn. 

STRUCTURE: 

6.1 Introduction 

6.2 The conjugacy relation 

6.3 The class equation of a finite group 

6.4 Groups of order pn 

6.5 Cauchy’s Theorem 

6.6 Conjugate classes in Sn 

6.7  Model Examination questions 

6.8 Exercises 

6.9    Summary 

6.10  Technical terms 

6.11  Answers to self assessment questions 

6.12  Suggested Readings 

6.1:  INTRODUCTION: 

 We introduce an equivalence relation on a given finite group G and find a neat 

algebraic description for the size of each equivalence class. Using these we deserve an equation 

known as “the class equation” of any finite group and deduce several beautiful and powerful 

results on the structure of finite groups. In particular, we extend the Cauchy’s theorem for 

finite abelian groups to general finite groups. 

6.2: THE CONJUGACY RELATIONS: 

6.2.1.Definition: Let G be a group and a, b G . we say that b is a conjugate of a if b = c-1ac for 

some c  G . If b is a conjugate of a, we write it as a ~ b .This relation ' ~ ' is called the conjugacy 

relation on G. 

6.2.2. Theorem: Let G be a group. The relation conjugacy is an equivalence relation on                           G. 

Proof Let a, b, c G 

(i) a ~ a as a = e-1 a e where e is the identity element of G. 

Therefore, ‘~’ is reflexive 

(ii) Suppose that a ~ b 

Then b = x-1 a x for some x G 

Now xb = a x and xbx-1 = a 

So, x 1  G  and a = ( x
1 

)
1 

bx
1 

. 

 b ~ a  
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Therefore, ‘~’ is symmetric. 

(iii) Suppose that a ~ b and b ~ c . 

Then b = x-1ax and c = y-1 by for some x,  y G .  

Now c = y-1 by  = y-1(x-1ax)y = (y-1x-1) a(xy) = (xy)-1a(xy) and x, y G . 

Therefore, ‘~’ is transitive. 

Hence the conjugacy relation ‘~’ is an equivalence relation on G. 

6.2.3. Self Assessment Question: If G is an abelian group and a, b G, prove that a ~ b  

a = b. 

6.2.4. Definition: Let G be a group and a  G .Then the equivalence class of ‘a’ w.r.t ‘~’ is 

called the conjugate class of a in G, and is denoted by C(a).  

Thus C ( a ) = {b  G / a ~ b} = {x 1ax / x  G} . 

6.2.5. Notation: For any element a in a group G, the number of elements of the conjugate class 

C(a) is denoted by Ca. 

6.2.6. Note that for any elements a and b in a group G, the conjugate classes C(a) and C(b)    

        are either disjoint or identical and therefore the distinct conjugate classes in G form a partition 

of G, and hence O(G) = Ca where the sum runs over a set consisting of one element from each 

conjugate class.  

6.2.7. Definition: Let G be a group and a  G. Then the set {x  G / xa = ax} is called the 

normalizer of a, and is denoted by N(a); 

That is, N (a ) = {x G / xa = ax}. 

6.2.8. Lemma: Let G be a group and a  G . Then N(a) is a subgroup of G. 

Proof : Since ea = a = ae, we have e  N (a) and hence N(a) is a non-empty subset of G. 

Let x,  y  N (a) . 
Then ax = xa and ay = ya. 

 ax = xa and y-1a = ay-1. 

Now (xy-1)a = x(y-1a) = x(ay-1) = (xa)y-1 = (ax)y-1 = a(xy-1). 

So xy -1  N (a ) . 

Therefore, N(a) is a subgroup of G. 

6.2.9. Note: For any subgroup H of a subgroup G, the set of right cosets of H may not  form 

a group (unless H is normal in G) under the usual operation. 

6.2.10. Lemma: Let a be an element of a group G, C(a) the conjugate class and N(a) the 

normalizer of a in G. Then the set C(a) is bijective with the set of all right cosets of                  N(a) in G. 

Proof: Let a  G . 

Consider C ( a )  =  {x 1ax / x G} and N (a) ={x G / xa  =  ax} . 

Let X be the set of all right cosets of N(a) in G; 

That is, X = {N (a) x / x G} 

Define f: C(a)  X by f ( x 1ax )    = N ( a ) x for any x 1ax  C ( a ) , x G . 

First observe that, for any x, y G , 
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x 1ax = y 1ay  axy 1 = xy 1a 

                     xy 1  N ( a ) 

                    N (a ) x = N (a ) y 

So, f is well defined. 

Also, for any x, y  G, f ( x 1ax )   =  f ( y 1ay )        N ( a ) x = N ( a ) y 

                                                                    xy 1  N ( a ) 

                                                                 a ( xy  1) = ( xy 1 ) a 

                                                                 x 1ax = y 1ay 

So, f is one - to - one. 

Let N (a) x  X where x  G . 

Now x 1ax  C (a ) and f ( x 1ax )   = N ( a ) x 

Therefore f is onto X. 

Hence,  f : C (a)   X is a bijection. 

6.2.11. Self Assessment Question : For any group G, prove that the center Z (G )  =    

6.3: THE CLASS EQUATION OF A FINITE GROUP : 

In this section the class equation of a finite group is derived. This equation is useful in 

proving several important results in the structure theory of finite groups. 

6.3.1. Theorem: Let G be a group and a G. Then Ca = . 

Proof : Consider C (a ) = {x 1ax / x  G} and N (a) ={x G / xa  =  ax}. 

Let X denote the set of all right cosets of N(a) in G. Since G is finite, we  have that C(a), N(a), 

X are all finite sets. We know that the number of right cosets of  N(a) in G is  . 

So the number of elements in X is . 

By lemma 6.2.10, X is bijective with C(a). That is, the sets X and C(a) have the same number 

of elements. 

                 Therefore, Ca =   where Ca is the number of elements of C(a). 

6.3.2. Theorem(The Class Equation):  

Let  G be  a finite group. Then O (G ) =    where the sum runs over one element a 

in each conjugate class. 

Proof: Let G be a finite group. For a  G , let Ca denote the number of elements of 

conjugate class C(a). Since the distinct conjugate classes in G form a partition of G, it follows 

that O(G) =  Ca where the sum runs over one element a in each conjugate class. 

By theorem 6.3.1, for any a G , we have  Ca =  

Therefore O (G ) =   where the sum runs over one element a in each conjugate class. 

6.3.3. Note :  

i) Let G be an abelian group. Then Z(G) = G and every conjugate class is a set consisting of 

exactly one element. So the class equation does not give any new information. 
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ii) The class equation is useful in the case of non-abelian groups. 

6.3.4. Example : Consider the symmetric group of degree 3, S3 which is the non- 

abelian group with least number of elements. We have O(S3) = 6 . 
Let e denote the identity transposition. Put f = (1 2), g = (2 3) and h = (3 1)    

Then fg = (1 3 2) and gf = (1 2 3).  Cleary f-1  = f, g-1 = g, h-1 = h and (fg)-1 = gf.  

So, S3 = {e, f, g, h, fg, gh} 

Also, fh = (1 2 3) = gf and gh = (1 3 2) = fg. Now C(e) = {e}, 

C ( f ) = {x 1 fx / x  S3 } 

        = { e-1fe, f-1ff, g-1fg, h-1fh, (fg)-1f(fg), (gf)-1f(gf)}. 

        = {f, h, g} = C(g) = C(h), and C(fg) = {fg, gf}. 

Therefore C(e), C(f) and C(fg) are three distinct conjugate classes in S3. 

6.3.5. Lemma : Let G be a group and a  G .Then a  Z (G ) if and only if  N(a) = G. If G is finite,  

a  Z (G ) if and only if O( N (a)) = O(G)  . 

Proof : a  Z (G)  ag = ga for all g  G 

   g  N (a) for all g  G . 

   N (a ) = G 

Therefore, a  Z (G)  N (a) = G →( I ) 

Suppose that G is finite. 

Then N(a) = G if and only if O( N (a))  = O(G ) → ( II ) 

From (I) and (II), we have that 

a  Z (G)  O( N (a)) = O(G) . 

6.4: GROUPS OF ORDER Pn : 

Groups of order pn, where p is a prime number and n is a positive integer, play an  important 

role in the structure theory of finite groups. 

6.4.1. Theorem : Let G be a finite group of order pn, where p is a prime number and n is a 

positive integer. Then Z (G )  {e} . 
Proof : Given that G is a finite group of order pn, where p is a prime number and n is a   

positive integer. Take the class equation of G; 

O(G) =   

where the sum runs over one element ‘a’ from each conjugate class. 

This can be written as O(G) =  +  →(I) 

By lemma 6.3.5, we have a  Z (G)  o( N (a)) = o(G) 

That is,  a  Z (G)   = 1 

So, (I) becomes O(G) = O(Z (G)) +  →(II) 

Also, by lemma 6.3.5, we have 

a Z (G)  O(N (a)) < O(G) →(III) 

Since N(a) is a subgroup of G, by the Lagrange’s Theorem, O(N(a)) is a divisor of  

O(G ) = pn →(IV) 

From (III) & (IV), p│  for all a Z (G) 
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and that p│  

Since p│ p n = O(G ) and p│ , we have that p│(O (G ) -  ) 

So from (II), we have that p│O(Z (G)) 

Therefore, O(Z (G))  p > 1 and hence Z (G)   {e} . 

The above theorem can be rephrased as follows: 

“ Any group of prime power order has nontrivial centre”. 

6.4.2. Self Assessment Questions : Prove that any group of order 625 has nontrivial  

center. 

6.4.3. Corollary : If G is a finite group of order p2 where p is a prime number, then G is 

abelian 

Proof : Given that O(G) = p2, where p is a prime number. 

Then, by theorem 6.4.1, Z (G)    {e} and hence O(Z(G)) > 1. 

Since Z(G) is a subgroup of G, by the Lagrange’s Theorem, O(Z(G)) is a a divisor of          

O(G) = p2 

So, O(Z(G)) = p or p2. 

If O(Z(G)) = p2, then O(Z(G) ) = O(G) and that Z(G) = G and hence G is abelian. 

Suppose that O(Z(G)) = p. 

Choose a  G such that a  ZG. 

We have Z(G)  Na and a  Na. 

Since O(Z(G)) = p and a  Z  G , we have oN a  p 1. 

Since N(a) is a subgroup of G, ON a ǀ O(G )   p2 e 

As O( N (a))  p + 1 and O( N (a ))│p2 , we have O( N (a)) = p2 = O(G ).  

So, a  Z (G ) , a contradiction to a  Z (G ). 

Therefore O(Z (G )) = p2 = O(G ) and hence Z (G ) = G . 

Thus G is abelian. 

6.4.4. Self Assessment Question: Prove that any group of order 169 is abelian. 

6.5: CAUCHY’S THEOREM 

1. Cauchy’s theorem was already proved for finite abelian groups in lesson 2(2.6.1). 

2. We shall extend this theorem to general finite groups in the following. 

6.5.1. Theorem (Cauchy’s Theorem): 

Let G be a finite group and p be a prime number. If p│O(G ) , then G has an element of order p. 

Proof : Suppose that p│O(G ) .Then O(G )  P . 

We shall use induction on O(G) to prove the theorem. Since O(G )  P, we can start 

induction at p. If O(G) = p, then G is a cyclic group of order p and hence every nonidentity 

element of G is of order p. Now suppose that O(G) > p and assume that the theorem is true 

for all groups of order less than that of G. 

Case (i) : Suppose G has a subgroup H and O(H) < O(G) and p│O( H ) . Then by our induction 

hypothesis, H has an element b(say) of order p. Now b  G and O(b) = p. 

Case (ii) : Suppose G has no subgroup H such that O(H) < O(G) and p│O( H ) Take the class 

equation of G; O(G ) =   where the sum runs over one element ‘a’ from each 
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conjugate class. This can be written as 

O(G)  = O( Z(G))       +  → (1)   

By our supposition, p│O( N (a)) for N (a)  G. So, N (a)  G, p│    and that Pǀ 

 Since p│O(G) and  p│  , by (1), we have that p│O(Z (G)) 

So, by our supposition, O(Z (G))  O(G) and that O(Z(G)) = O(G) and hence Z(G) = G. 

This shows that G is abelian. Therefore by Cauchy’s theorem for abelian groups, G has an 

element of order p. This completes the induction and hence the theorem. 

6.5.2. Self Assessment Question : Prove that there exists an element a  e in a group of order 

793 such that a61 = e. 

6.5.3. Self Assessment Question : Prove that any group of even order has an element a  e 

such that a2 = e.  

6.6: CONJUGATE CLASSES IN Sn: 

In this section, we use several results on the conjugate classes to determine all the conjugate 

classes in the symmetric group Sn. Let us recall that the elements of  Sn are the permutations on 

the set  In = {1,2,..n} and that any nonidentity permutation is a product of disjoint cycles, each 

of length > 1 (See theorem 4.3.7). In fact, we have defined an r-cycle only when r > 1(see 

definition 4.3.1). Now, let us agree, for convenience, that 1-cycle is defined to be the 

identity map(identity element in Sn). With this convention, we can rephrase theorem 4.3.7 as 

given in the following. 

6.6.1. Theorem : Any permutation f in Sn can be written as f  1.2.3 ........ k  where i is 

a cycle of length ri, 1 i  k with r1  r2  …. rk  and r1 + r2 + …. + rk   n. (In other words, 

any permutation in Sn is a product of disjoint cycles) 

Proof : Let f  Sn 

Suppose f is the identity permutation in Sn.Then f can be written as product of n number of     

1-cycles, (i.e., f = (1) (2) (3) ----- (n)) each of which is a cycle of length 1, and hence we are 

through. 

Suppose f is not the identity permutation in Sn. Then by Theorem 4.3.7, f can be written 

as f  1.2 . ….….., where each i is a cycle of length  si  1, 1 i  k . Observe that, for 

any a  In, af  a  ai   a for some i with 1 i  k and aj  = a for j  i. 

Write T = {a  In / (a) f = a}. Since T is finite, we can write T as T = {a1, a2, ….…,at} 

Now f  = ( a1 ). ( a2 ) ….… ( ak ).  1. 2. ….….. .. Since i’s are disjoint, they commute with 

each other and hence we can rearrange 1.2 .….….., such that their lengths are in 

increasing order. 

Also, for any a  In, (a)f  a  a is involved in some i , 1 i  k. Therefore f  1 . 2 .……. 

k.. 1.2 . ….….. where each i is a cycle of length 1, and i is a cycle of length si , 1   i   

k with 1  1  ….… 1  s1  s2  ….…  sk and   1  1  ….… 1   s1  s2  ….…  sk  t 

 (n  t)  n. 



Algebra  6.7  Another Counting Principle 

6.6.2. Definition: Let n be a positive integer. A finite increasing sequence of positive integers 

whose sum is n, is called a partition of n; that is, a finite sequence { r1, r2, ……, rk } of 

positive integers is called a partition of n if (i) r1  r2  …… rk , and (ii ) r1 + r2 + ……+ rk = n 

The number of partitions of n is denoted by p(n). 

6.6.3. Examples : 

p(1) = 1, since {1} is the only partition of 1. 

p(2) = 2, since {1, 1} and {2} are the only partitions of 2. 

p(3) = 3, since {1, 1, 1},{1, 2} and {3} are the only partitions of 3. 

p(4) = 5, since {1, 1, 1, 1}, {1, 1, 2}, {1, 3}, {2, 2} and {4} are the only partitions of 4. 

6. 6. 4. Theorem : The number of conjugate classes in Sn is p(n), the number of partitions                                              of n. 

Proof : We shall exhibit a one-to-one correspondence between the conjugate classes in Sn and 

partitions of n. Any f Sn can be expressed as f = 1.2 .….….. , where  each i is  a 

cycle  of length  ri    with r1  r2  .…….…rk    and r1 + r2 + …..……+ rk = n (see theorem 

6.6.1) ; that is, {r1, r2, ….…, rk } is a partition of n. Further , by the uniqueness proved in Theorem 

5.3.7, any representation of f as product of cycles yields the same partition of n. We call this 

unique partition as ‘the partition induced by f’. Now we prove the following : 

(i) For any f , g  Sn f is a conjugate of g if and only if both f and g induce the same partition of 

n. 

(ii) Any partition of n is induced by some f  Sn . These two give us a bijection C ( f ) the 

partition induced by f of the set of conjugate classes in Sn onto the set of partitions of n. 

i) L et f , g  Sn such that f ~ g. Then f = h-1.g.h for h  Sn. Suppose g = 1.2 .….….. ------

(I) where i ' s are cycles of length ri with r1  r2  ….… rk   and r1 + r2 +  + rk = n.Then  r1, r2, 

.…. rk  is the partition of n induced by g. We shall prove that the same partition is induced by 

f also ; that is, f has a similar representation as in (1) for g, which yields the same partition    

 r1, r2, .…. rk}. 

Now f  = h1  g h = ( h 1  h )  ( h 1  h ) h 1  h ) . 
Therefore,  f  = 1  2  ……. k where i  h 1 i h   1 i  k. 

If the cycle i  (a1, a2, ……, 
i
) then, clearly, h 1 i h   ((a1)h ,  (a2)h,…. ,

i
 ) h) which 

is again a cycle of length ri  1   i  k. 

Thus {r1, r2, ……,, rk } is the partition induced by f also.  

Conversely, suppose that both f and g induce the same partition {r1, r2, ……, rk }. 
Then f and g have representations of the form f = 1 2 ….… and g = 1  2  …….  k 

where i and i are cycles, each of length , ri , 1  i  k with r1 r2  ……. rk  and r1 +  r2  +…….+ 

rk     n . For 1  i   k, write i  ( , , ……, ) and i  ( , , ……, ). Then 

    1,2, ……., n  =  , and for any i  j, the set { , , ……, } and { , , 

……, } are disjoint (  i and j are disjoint cycles).  Similarly { , , ……, } and 

{ , , ……, } are disjoint cycles. 

Now, define h :{1, ……, n}  {1, ……, n} by (  )h = . Then h  Sn and h 1  f  h  g, so 

that f  ~ g. 
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ii) Let { r
1
,  r

2 ,……, r
k
 } be a partition of n. Then 0 < r

1  r
2 ……  r

k
 and r

1 + r
2 + ……+ r

k = n. For 

1  i  k , write  i = ( ri 1 + 1, ri 1 + 2, ……, ri 1+ ri ), where r = 0 . Then each i is a cycle of length 

ri. Put f = 
1  

2  ……
k
. Then f is a permutation in Sn which induces the partition { r

1
,  r

2 

,……, r
k
 }.   

This completes the proof. 

6.6.5. Self Assessment Question : If  = (a1, a2, ……, ar ) is a cycle in Sn and h  Sn,  

 Prove that h1  h is the cycle (( a1 ) h, ( a2 ) h, ……, (ar ) h ) . 

6.6.6. Self Assessment Question : How many conjugate classes are there in each of S1, S2, 

S3, S4, and S5. 

6.7. MODEL EXAMINATION QUESTIONS : 

6.7.1. State and derive the class equation of a finite group. 

6.7.2. State and prove Cauchy’s theorem for finite groups. 

6.7.3.  Prove that any group of order p2 is abelian, where p is a prime. 

6.7.4.  For any positive integer n, prove that the number of conjugate classes in Sn is  

equal to the number of partitions of n. 

6.8. EXERCISES : 

6.8.1. If N is a normal subgroup of a group G and a  N, Prove that C (a)  N . 

6.8.2. If N is a normal subgroup of a finite group G, Prove that O( N ) = Ca for some choices of 

a in N. 

6.8.3. If in a finite group G, an element a has exactly two conjugates, prove that G has a normal 

subgroup N {e}, G.  

6.8.4. Find all the conjugate classes in S3 and verify the class equation for S3. 

6.8.5. List all the conjugate classes in S4, find the Ca’s and verify the class equation 

6.8.6. Find all the conjugate classes in A5 and the number of elements in each conjugate        class, 

where A5 is the alternating group of degree 5. 

6.8.7. Exhibit two elements in A5 which are conjugate in S5, but not in A5. 

6.8.8. Prove that A5 is simple. 

6.8.9. If o(G) = p2 where p is a prime, prove that G has a subgroup of order pn for all 0  n  r 

(use theorem 5.4.1). 

6.8.10. For any group G, prove that G is abelian if and only if G/  (G ) is cyclic. 

6.8.11. Prove that any group of order 15 is cyclic. 

6.8.12. Prove that any subgroup of order pn-1 in a group G of order pn is normal in G,  where p 

is a prime number. 

6.8.13. Prove that any group of order 28 is not simple. 

6.8.14. Find the number of conjugates of (1 2) (3 4) is Sn,  n   4 . 

6.8.15. If O(G) = 28 and G has a normal subgroup of order 4, prove that G is abelian. 

6.8.16. If H is a proper subgroup of a group G of order pn, where p is a prime number, prove 

that there exists x  G such that x  H and x 1Hx = H 
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6.9  SUMMARY 

In this lesson, you have learnt the concept of conjugacy relation on a group G and, for 

any a  G , the conjugate class C(a) and the normalizer N(a) and proved that C(a) is bijective 

with the set of right cosets of N(a) in G. Using this, we have derived the class equation of a 

finite group which is a crucial tool in proving the Cauchy’s Theorem for a general finite 

group. Also, we have proved that the centre of a group of prime power order is nontrivial and 

deduced that any group of order p2 is abelian if p is a prime number. Further we have determined 

the conjugate classes of the symmetric group Sn by proving that the number of conjugate 

classes in Sn is equal to the number of partitions of n.  

6.10  TECHNICAL TERMS 

 Conjugacy relation, conjugate class, normalizer of a class equation, Cauchy’s theorem 

for finite groups, partitions of n. 

6.11  ANSWER TO SELF ASSESSMENT QUESTIONS: 

6.2.3.  a  b  a = c-1bc for some c G 

a = c1cb = b (since G is abelian) 

    a = b  a = e1be  a b 

6.2.10.  x Z (G )  xa = ax for all a  G x N (a) for all a G 

x  

6.4.2. Let G be a group of order 625. Then O(G) = 625 = 54  = pn where p = 5 is a prime    

                                                                                                                                                                                                                              number and n = 4. So, by theorem 6.4.1, the centre Z(G) is nontrivial. 

6.4.4. 169 is of the form p2 where p = 13 is a prime number Now use Theorem 6.4.3. 

6.5.2. Let G be a group of order 793. Then O(G) = 793 = 61x13. Now 61 divides O(G) and 

61 is a prime number. So, by Cauchy’s Theorem (6.5.1), G has an element of order 61.                                    

Therefore there exists a  e in G such that a61 = e. 

6.5.3. Similar to 6.5.2; for, if G is a group of even order, then 2 divides O(G) and 2 is a prime 

number. 

6.6.5. Let  = (a1, a2, ……, ar ) h  Sn  and (( a1 ) h, ( a2 ) h, ……, ( ar ) h ) . 

Now we prove that   h 

For any a  In, 

(a)(ho) = ((a)h) =          

This shows that h   and hence h 1  h = . 

6.6.6. Follows from 6.6.4 and from the facts that p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5 and    

p(5) = 7. The number of conjugate classes in S1, S2, S3, S4 and S5 is 1, 2, 3, 5 and 7, 

respectively. 
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LESSON -7 

SYLOW’S THEOREM 
OBJECTIVES: 

The objectives of this lesson are to  

 prove that the Sylow’s theorem in three different methods. 

 define the notion of a p-Sylow subgroup and prove that any two p- Sylow                                                   subgroups  

of a group are conjugate to each other.  

 prove that the number of p-Sylow subgroups of a group G is a divisor of O(G) and is 

of the form 1+kp, k  0. 

STRUCTURE: 

7.1.  Introduction 

7.2.  The first proof of Sylow’s theorem 

7.3.  The second proof 

7.4.  The third proof 

7.5.  Sylow’s theorem - II 

7.6.  Sylow’s theorem - III 

7.7.  Model examination questions 

7.8.  Exercises 

7.9   Summary 

7.10 Technical terms 

7.11 Answers to self assessment questions 

7.12 Suggested Readings 

7.1. INTRODUCTION: 

Lagrange’s theorem tells us that the order of a subgroup of a finite group is  a divisor of 

the order of that group. The converse of this theorem is not true; that is, for any divisor m of 

O(G), there may not exist any subgroup of order m in G. For example, there are no subgroups 

of order 6 in A4, even if 6 is a divisor of O(A4). There are very few theorems which assert 

the existence of subgroups of prescribed order in arbitrary finite groups. In this direction, a 

classic theorem due to the Norwegian mathematician Sylow is the basic and widely used one. 

We present three proofs which are of completely diverse nature. 

7.2: THE FIRST PROOF OF SYLOW’S THEOREM: 

In this section, we present an elegant and simple elementary proof of Sylow’s theorem 

which uses certain basic ideas from number theory and combinotories. For any positive 

integers n and k with k  n, the number of ways of picking a subset of k elements from a set 

of n elements is equal to . 

7.2.1: Lemma: If n = p m , where p is a prime number, pr |m and pr+1  m then pr |  

and pr+1   

Proof : Now  

                                  =   
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On the right side of the above equation, it can be easily seen that except for the term m in the 

numerator, any power of p dividing ( p m  i ) is the same as that dividing p  i . 

So, on the right side of the above equation, all powers of p are cancelled out except the 

power which divides m. 

Therefore,   and   

7.2.2: Self Assessment Question: In the above, verify that for any  m –i  
 –i 

7.2.3: Theorem (Sylow’s Theorem - I): 

Statement: Let G be a finite group, p be a prime number and  be a nonnegative integer. If         

p


O(G ), then G has a subgroup of order p. 

Proof: Since p

O(G ), we have that O(G) = p

 
m , where m is a positive integer. 

Hence the prime p may or may not divide m. 

Let p
r be the largest power of p that divides m. 

Then we have r 0, pr  m and pr +1  m. 

Let M be the set of all subsets of G each with p


  elements. 

The number of elements in M is , which is divisible by pr and not divisible by pr+1 (by 

lemma 7.2.1). 

Define a relation ‘ ’ on M as follows: 

For any A, B  M, A B  A = Bx for some x G. 

It can be easily verified that ‘ ’ is an equivalence relation on M as follows: 

For A M, let   denote the equivalence class containing A in M and  denote the number of 

elements in . Since the equivalence classes form a partition of M,  

we get that   

Since pr+1 does not divide , by (1), it follows that pr+1 does not divide  for some 

equivalence class . 

Let  = {A1, A2,….,An}. 

Now A ~Ai for all i and pr+1  n. 

Put H = {g G | Ag = A} 

Then H is a subgroup of G. 

We prove that O(H) = p


 

Since A ~ Ai, we have that Ai = Agi for some giG and  = {Ag1, Ag2,…, Agn} 

Let us consider the right cosets Hgi, for i = 1,…,n. 

For i, j with 1  i, j  n, 

Hgi = Hgj   gi   H 

 Agi   = A 

 A gi = Agj 

                   i = j 
This shows that Hg1, Hg2,.........., Hgn are all the distinct right cosets of H in G 
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Suppose Hg is a right coset in G where gG. We have Ag ~ A 

Ag = Agi for some i with 1  in 

 gig
1 

H for some i 

 Hg = Hgi for some i. 

So, Hg is one of Hgi, 1  i  n. Therefore Hg1,Hg2 ,.........., Hgn are only distinct right cosets of 

H in G. 

Since Hgi, 1  i  n form a partition of G, it follows that p m = O(G) = n.O(H) 

As pr|m,  pr  p m = n.O(H ) 

Since pr+1  n and pr n.O ( H ) , it follows that p o(H )    → (2) 

If aA, then for all hH, ahAh = A 

This implies that A has atleast O(H) number of elements. 

Since AM, p = | A | O ( H )                                                 → (3) 

From (2) and (3), (OH) = p 
Thus there exists a subgroup H of G of order p

7.2.4. Self Assessment Question: In any group of order 2500, prove that there is a     

subgroup of order 125. 

7.2.5. Corollary: Let G be a finite group and p be a prime number. If pm  O(G) and       

pm+1  O(G), then G has a subgroup of order pm. 

Proof: This is an immediate consequence of theorem 7.2.3. The above corollary has an 

importance, even though it is a direct consequence of theorem 7.2.3. The reason is that 7.2.5 

implies 7.2.3 (see 7.2.6 and 7.2.7, given below). Therefore, in order to prove the main 

theorem, the Sylow’s theorem-I, it is enough if we prove 7.2.5. This is what we are going to 

do in the second proof and third proof given in the next two sections. 

7.2.6: Self Assessment Question: Let G be a group of order pn where p is a prime number. 

Then for each 0  r  n , prove that G has a subgroup of order pr. 

7.2.7: Self Assessment Question: In any group of order 405, prove that there is a subgroup 

of order 81. 

7.2.8: Definition: Let G be a finite group and let p be a prime number such that      

pm O(G) and pm+1 O(G). Then any subgroup of G of order pm is called a p-Sylow 

subgroup of G. 

7.3: THE SECOND PROOF: 

As it is mentioned in the introduction to this lesson, we present another proof of the Sylow’s 

Theorem-1 which is completely different from the first proof given in the previous section 

and is based on induction on the order of the given group. 

7.3.1: Theorem: Let G be a finite group and p be a prime number. If pm O(G) and 

pm+1  O(G), then G has a subgroup of order pm 

Proof: If m = 0, then G has the subgroup {e}, which is of order pm. Suppose m is a positive 

integer. 

We prove the theorem by using induction on O(G). As pm O(G) and m > 0, O(G)  p. So, we 

start induction at p. 

If O(G) = p, then G itself is a subgroup of order pn, where m = 1. Suppose o(G) > p and assume 



Center for Distance Education  7.4   Acharya Nagarjuna University 

  

that the theorem is valid for all groups of order less than o(G). Consider the center         

Z(G) ={aG | ax = xa for all x  G} which is a normal subgroup of G. 

Case (i)  Suppose p O(z(G)) 

Now Z(G) is a finite group whose order is divided by p. 

So, by the Cauchy’s theorem (2.11.3), Z(G) has an element of order p.   Let aZ(G) such that   

a e ad ap = e. 

Put N = (a), the subgroup generated by a. 

Then N is a normal subgroup of G (  xa i x 1 = ai   for all x  G and ai  N )  
and O(N) = p ( (a) = p ) 
So, we can form the quotient group G/N. 

As p , O(G/N)  

Also, since Pm O(G) and pm+1  O(G), it follows that pm–1 O(G/N) and pm  O(G/N). 

 by the induction hypothesis, G/N has a subgroup, say  of order pm–1          

Let H = {x  G / Nx  } 
Then H is a subgroup of G containing N as a normal subgroup and H/N =  

Now O(H) = O(N ) = O  O(N ) = O (  ).O ( N ) = pm–1.p = pm 

Thus a subgroup H of order pm in G.   

Case (ii) Suppose p  O(Z(G)) 

Take the class equation O(G) =  where this sum runs over one 

element a in each conjugate class. 

The above class equation can be written as 

O(G) =  O(Z(G)) +  where a1,a2,.............,an are elements such that C (a1 ),…,C 

(an ) are all the distinct conjugate classes each with more than one element. 

We have  for a G 

Since each  > 1, it follows that each N(ai)  G, 1  i  n . 

As pm O(G) where m > 0, P O(G). 

Since p  O(Z(G)), we get that P  for some i 

  for some i 

Since  and  , we have  

Also, O(N(ai)) < O(G). As pm+1  O(G),  pm+1  O(N(ai)). 

So, by the induction hypothesis, N(ai ) has a subgroup of order pm. But any subgroup of 

N(ai) is a subgroup of G also. Thus G has a subgroup of order pm. 

7.3.2: Theorem (Sylow’s Theorem –I): 

Let G be a finite group and p be a prime number. If p
 O(G) , then G has a subgroup of 

order p
. 

Proof: Let m be a non-negative integer such that pm O(G) and pm+1  O(G). Then by 

theorem 7.3.1, there exists a subgroup K of order pm in G 

But, given p O(G) 
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So m and p O(K ) 

Therefore, by 7.2.6, K has a subgroup H of order p. 

This implies that H is also a subgroup of G of order p. 

7.4: THE THIRD PROOF: 

In this section we present another proof of the Sylow’s theorem which is completely 

different from either of the two earlier proofs. Here we shall first prove that the symmetric 

group  or degree pk has a p-Sylow subgroup and later prove that, if G and M  are finite 

groups such that G  M and M has a p-Sylow subgroup, then G has a p-Sylow subgroup. 

Finally we shall use the Cayley’s theorem to get a sufficiently large K such that G is 

embedded in . Recall the order of is (pk)! 

7.4.1: Definition: Let p be a fixed prime number. For any positive integer k, n(k) is  defined 

to the the positive integer such that pn(k) (pk) ! and pn(k)+1 (pk)!. In other words, pn(k) is the 

largest power of p that divides (pk)! 

7.4.2: Lemma: For any positive integer k, n(k) = i-1 = 1 + p+p2+…..+ pk-1.  

Proof: We shall use induction on k 

If k =1, then (pk)! = p! = 1.2…(1–p).p. 

Since p p! and p2 p !, n(1) =1 

Now, let k >1 and assume that the lemma is true for k–1.  

Then we have n(k–1) = 1 + p + p2 + … + pk–2. 

It is clear that only the multiples of p, that is,  p, 2p,..., pk-1.p are divisors of (pk)! 

So, n(k) must be a power of p which divides 

p(2p)(3p)…(pk–1 p). .(pk 1 )! 

Therefore, n(k) = pk–1 + n(k–1) = pk–1 + pk–2 + …+ p+1. 

7.4.3: Lemma: For any prime p and positive integer k, the symmetric group  has a 

 p-Sylow subgroup. 

Proof: Let p be a prime number and k be a positive integer. We have to prove that  has a 

subgroup of order pn(k) where n(k) = 1 + p + p2 +…+ pk–1. 

We shall prove this by using induction on k. 

If k = 1, then the cycle (1 2 ....... p) is an element of order p in   and so it generates a 

subgroup of order p = pn(1) (since n(1) =1) in . Therefore, the lemma holds good for k = 1. 

Now, let k >1 and assume that the lemma is true for k = 1. Then has a  subgroup of 

order pn(k–1). 

Let us divide the integers 1,2,3,…, pk into p clumps, each with pk–1 elements as follows: 

{1,2,3,.........,pk-1}, { pk–1 + 1,  pk–1  + 2,......,2pk–1}, ........., {(p–1) pk–1  + 1, (p–1) pk–1  + 2,…, 

pk}. 

Consider the cycles ,..............,  defined by 

   = (1, p k -1 +1,  2 p k 1 +1, ..............., ( p 1)  p k 1 +1) 

   = (2, p k -1 + 2,  2 pk 1 + 2, ..............., ( p 1)  pk 1 + 2) 
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.     .                  . 

.     .                  . 

.     .                  . 

= ( p k 1, 2 p k 1, 3 p k 1.................., p k ) 

Clearly   are disjoint cycles, each of length p and hence , identity and 

 for all , . 

Put  = 1  2   . Then p  = e and  satisfies the following property: 

If g  such that g(i) = i for all i , then g for all i { jpk1 + 1, jpk1 + 2, 

…, ( j + 1) pk1}. 

Let A = { g   | g(i) = i for all i > pk-1} 

Then A is a subgroup of . 

Also, the mapping g  g /  gives us an isomorphism of A onto  and hence           

A  . 

By the induction hypothesis, A has a subgroup B1 of order pn(k–1) , 

For 2  j  p,   write Bi = 
i1)

B1
i1 

and B = B1 B2.........Bp 

Each Bi is isomorphic to B1 and hence o(Bi ) = o(B1) = pn(k–1)  i 
Also, for any i   j, BiBj = BjBi (since Bi(s)   s  Bj(s) = s) 

Therefore, B is a subgroup of . 

Also, since Bi  Bj = {e} for i  j, it follows that 

O(B) = O(B1)O(B2) .........O(Bp) 

 
Further, since  p = e and Bi = i1) B1  i1, it follows that 1B= B. 

Let H = {j b | b B and 0 j p 1}. 

Since  B and 1 B = B, we get that H is a subgroup of  and O(H) = p.O(B) =         p. 

pn(k 1) p = pn(k 1) p+1 = pn(k) 

Thus there exists a subgroup H of order pn(k) in . 

7.4.4: Self Assessment question: Prove that H,  defined in the above proof is a subgroup of . 

7.4.5: Self Assessment question: Prove that n(k–1).p+1 = n(k). 

Before we reach the third proof of the Sylow’s theorem, we need the following       

terminology. 

7.4.6: Definition: Let G be a group and let A and B be subgroups of G. For any xG, let  A x B = 

{axb | aA and bB}. Then A x B is called a double coset of A, B in G. 

7.4.7:Lemma: Let G be a group and let A and B be subgroups of G. Define a binary relation 

~ on G as follows: 

For any x,y G, x~y  y = a x b for some aA and bB. 

Then ~ is an equivalence relation on G and the equivalence class of xG is the  set A x B =      

{ axb | aA, bB} 



Algebra  7.7   Sylow’s Theorem 

 

 

Proof: Let x, y,z G 

(i)  x ~ x as x = e x e, e A B 

 (ii) Suppose that x ~ y 

Then y = a x b for some aA and bB 

Now a–1y = xb and x = a–1yb–1, where a–1A and b–1B. So, y~x. 

 (iii) Suppose that x ~y and y~z 

Then y = a1 x b1 and z = a2yb2 for some a1, a2A and b1, b2B 

Now z = a2 yb2 = a2 (a 1xb1) b2 = (a2 a1 )x(b1 b2 ) where a2, a1 A and b1, b2 B. So, x~z 

Therefore, ‘~’is an equivalence relation on G. 

If [x] is the equivalence class containing x, then 

[x] = { yG |x~y} 

     = {yG |y = a x b, aA,bB} 

     = {a x b/aA, bB} 

     = A x B 

7.4.8 Lemma : If A, B are finite subgroups of a group G and xG, then the number of 

elements in the double coset A x B is given by 

|A x B| =    

Proof: Let xG 

Now we show that the sets AxB and AxBx–1 have the same number of elements. 

Define f : A x B  A x Bx–1 by f(a x b) = axbx–1 for all axbAxB where aA and bB. 

Suppose that f(a1xb1) = f(a2 x b2) where a1,a2A and b1,b2B.  

Then we have a1 x b1x–1 = a2x b2x–1 

This implies that a1 x b1 = a2x b2 (by right cancellation law) So, f is one - one. 

Let yA x Bx–1 

Then y = axbx–1 for some aA, bB 

Now axbAxB and f (a x b) = a x b x–1 = y. So, f is onto Ax Bx–1. 

Therefore f is a bijection of A x b onto A x Bx–1 

Hence, A x B and Ax Bx–1 have the same number of elements.  

That is, |A x B| = |Ax Bx–1| 

Note that xBx–1 is a subgroup of G as B is a subgroup of G and O(B) = O(xBx–1).  Therefore, 

|A x B| = | A x Bx–1| 

            = | A . (xBx–1)| 

           =  

           =  . 
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7.4.9. Self Assessment Question: For any subgroups A and B of a group G, prove that any 

two distinct double cosets are disjoint and that, if G is finite, 

O(G)=  

7.4.10. Lemma: Let G be a subgroup of a finite group M and p be a prime number. Suppose 

that M has a p-Syllow subgroup Q. Then G has a p- Sylow subgroup P. In fact, P = G  

xQx1 for some xM. 

Proof: Suppose that M has a p-Sylow subgroup Q. Then O(Q) = pm where pm O(M) and 

pm+1 O(M)  1. We shall prove that G  xQx 1 is a p – Sylow subgroup of G for some 

xM. 

Suppose pn o(G) and pn+1 O(G). 

Then o(G) = pn.k for some integer k with p k 

Now we have to prove that O( G  xQx 1 ) = pn for some xM 

Consider the double cosets G xQ of G, Q in M. Since the double cosets from a partition of M, 

we have o(M) =    where the sum runs over one element x form each double coset of 

G, Q in M. 

By Lemma 7.4.8, we have | GxQ | =   =  

Observe that  is a subgroup of xQx–1, and is a subgroup of G, and O(xQx–1) =  

O(Q) =  and that  o(G  xQx1 ) =  for some integer 0  mx  m and 0  mx  n. 

So, |GxQ| =  

If mx < n for all x, then  and that , which is a 

contradiction since  pm+1 O(M) . 

So for some xM, mx= n and that for this x, O( G  xQx 1 ) = pn 

Therefore, P := G  xQx 1 is a p - Sylow subgroup of G. 

In the following we present a third proof of the Sylow’s theorem. 

7.4.11: Theorem: (Sylow’s theorem I): 

Let G be a finite group, p be a prime number and  be any positive integer. If p
  O(G), 

then G has a subgroup of order p
. 

Proof: Let o(G) = n. Consider the symmetric group of degree n, Sn. By  Cayley’s theorem (4.3.1), 

G can be regarded as a subgroup of Sn. Choose k such that n  pk. Now In   and hence 

any permutation on In can be regarded as a permutation on I pk (see 4.2.5). Therefore, Sn 

can be regarded as a subgroup of and hence G is a subgroup of . By lemma 7.4.3.  

 has a p-Sylow subgroup. So, by lemma 7.4.10, G has a p-Sylow subgroup. Let P be a a 

p-Sylow subgroup of G. Now O(p) = , where O(G) and +1 o(G). Since p  o(G ) , 

  m . So, by 7.2.6. P has a subgroup of order p  which will be a subgroup of G also. 

7.5: SYLOW’S THEOREM: 

Let G be a finite group. If P is a p-Sylow subgroup of G, then for any xG, xPx–1 is also 
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a p-Sylow subgroup of G, since O (xpx–1) = O(p). In the following, we shall prove that any 

other p – Sylow subgroup of G must be of the form xpx–1 for some xG. Let us recall that 

two subgroups H and K of G are said to be conjugate if H = xkx–1 for some xG 

7.5.1: Theorem (Sylow’s Theorem II): 

If G is a finite group, p a prime and pn o(G) but pn+1 O(G), then any two subgroups 

of G of order pn are conjugate. 

Proof: Let P and Q be subgroups of G, each of order pn; that is, P and Q are p–Sylow 

subgroups of G. We have to prove that P = xQx–1 for some xG. Double coset 

decomposition of G with subgroups P and Q is given by G =  PxQ where the union runs over 

one element x from each double coset. 

Now, O(G) = | PxQ | where the sum runs over one element x from each double coset. 

For any xG, we have (by 7.4.8) 

|PxQ| =  =  

Observe that p ( xQx 1 ) is a subgroup of P and is a subgroup of xQx–1 and that O ( p  ( xQx
1 

) ) 

=  for some  0   nx  n . 

So, for any xG, |PxQ| =  

If nx < n for all x, then pn+1   = |pxQ| for all x and that pn+1
| PxQ | = O(G) 

which is a contradiction to the fact that pn+1  O(G); So, nx = n for some xG. 

Therefore, O( p ( xQx 1 ) ) = pn = O(p) and 

Hence p ( xQx 1 ) = p and that p ( xQx 1 ) 
But O(P) = O(xQx–1)= pn. So, P = xQx–1 

Thus there exists xG such that p = xQx–1 

Hence P and Q are conjugate. 

7.5.2. Self Assessment Question: 

Determine all 2-Sylow subgroups of S3 and A4. 

7.5.3. Self Assessment Question: 

Prove that a p-Sylow subgroup is normal if and only if it is the unique p-Sylow subgroup. 

7.5.4. Definition: Let G be a group and H be a subgroup of G. Then the normalizer of              H in G, 

denoted by N(H), is defined as N(H) = {gG|gHg–1 =H}. 

Note that if H is a subgroup of G, then N(H) is a subgroup of G, and H is a normal 

subgroup of N(H). 

7.5.5. Lemma: Let G be a finite group and p be a prime number. Then the number of p-Sylow 

subgroups of G is equal to O(G) / O( N (P)) where P is a p-Sylow subgroup of G. In particular, 

this number is a divisor of O(G). 

Proof: Let P be any p-Sylow subgroup of G and let X be the set of all p-Sylow subgroups  of G. 

Then, by Sylow’s theorem II (7.5.1) we have 

X= {xpx–1 | xG} 
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It is easy to see that the mapping xpx–1  N(P)x is a bijection of X onto the set  of right 

cosets of N(P) in G. 

So, the number of p-Sylow subgroups is equal to the index of N(P) in G which is same as    

O(G) / O( N (P)) and this divides O(G). 

7.5.6 Self Assessment Question: 

Prove that the number of p-Sylow subgroups of a group G is a divisor of the  index of a p-

Sylow subgroup in G. 

7.6. SYLOW’S THEOREM - III: 

In the previous section, we have proved that the number of p-Sylow subgroups  of a group G 

is a divisor of O(G). The following gives us more information about this number. 

7.6.1 Theorem (Sylow’s Theorem-III) : Let G be a finite group and p be a prime number. 

Then the number of p-Sylow subgroups of G is of the form 1+pk for some integer k  0.  

Proof: Let P be any p-Sylow subgroup of G. Then O(P) = pn where pn O(G) and 

pn+1 o(G). Consider the normalizer of P in G, N(P). By lemma 7.5.5, the number of p-Sylow 

subgroups of G is equal to  

Now we show that the number of p-Sylow subgroups of G is of the form 1+pk for some integer 

k  0. Consider the double cosets pxp, xG. 

Suppose px1p, px2p, ............, pxrp are all the distinct double cosets in G where  xiG. For 

i = 1,2, ...........,r. 

Since these form a partition of G, we have o(G) =  

We can assume that x
1 , x2, .........., xl  N ( P ) and x

l +1 , ..........,xr  N ( P ) . 

Observe that x N ( P )  xPx 1 = P  xP = Px . 

So, for x N(p) , PxP = Px a right coset of p in N(P), and o(PxP) = o(Px) = o(P) = pn 

Also, xN(P)  xPx1  P  P  ( xPx 1 )   P 

So, for xN(P), O ( P  ( xPx
1 

) ) = Pn 
x for some 0  nx < n therefore for xN(P), 

 and 2n nx n+1  

This implies that  n+1| |pxp| for every x  N (P) 
Now o(G) =  =  +  

                  = lpn + pn+1.k for some integer k  0. 

Let x N ( p ) . Then Px = PxP =  for some 1  i r . 

This shows that every right coset of P in N(P) must be of the form  for some 1  i l. So, there are 

exactly l number of distinct right cosets of P in N(P),  

As     Px. So, x 1
  N(P) 

which implies that xiN(P) and hence 1  i  l.  

l = the index of P in N(P)  =  = . 

Therefore, O(G) = O(N(P)) + pn+1.k 

            (Or) 
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Hence, the number of p-Sylow subgroups of G is of the form 1+pk for some  k   0. 

In the following examples, we shall demonstrate how these three Sylow theorems 

can be used to know about the structure of finite groups. 

7.6.2: Example : Let G be a group of order 112.132. We shall show that G is abelian. 

By 7.5.6 and 7.6.1, the number of 11- Sylow subgroups of G is of the form 1+11k for some 

integer k   0 and (1+11k) O(G) . It is clear that (112, 1+11k) =1. So, (1+11k) O(G)= 112.132 

implies (1+11k)  132 only for k = 0, 1+11k divides 132. So, the number of 11-Sylow 

subgroups is 1+11(0) =1. 

Also, the number of 13-Sylow subgroups of G is 1+13k for some integer k  0 and 

(1+13k) O(G). As (132, 1+13k)=1, (1+13k) O(G) = 112.132 implies (1+13k) 112. Only 

for k = 0, 1+13k divides 112. So, the number of 13-Sylow subgroups is 1+13(0) =1. 

Let H be the 11- Sylow subgroup of G of order 112 and K be the 13-Sylow subgroup of G 

of order 132. Since each conjugate of H is a 11-Sylow subgroup of G, H is a normal 

subgroup of G. Similarly, K is a normal subgroup of G. 

Since O( H  K ) is a common divisor of 112 and 132, O( H K ) =1; that is,  H  K = {e}. 

So, |HK| =  

Therefore, G = HK 

Further, for any x  H , y  K , we have 

xyx–1y–1 = (xyx–1) y–1
 K (   K is normal) 

              = x(yx–1y–1) H (  H is normal) 

and hence xyx–1y–1  H  K = {e}. This implies that 

xyx–1y–1 = {e} and that xy = yx 

Thus xy = yx for all xH and yK 

Let g1, g2G. Now g1= x1y1  and g2 = x2y2 for some x1, x2H and y1, y2 K. Observe that 

H and K are abelian groups as their orders are of the prime squares 

Now g1g2 = (x1 y1) (x2 y2) 

                  = (x1y1x2) y2 

                  = (x2 x1) (y2y1) 

                  = (x2y2) (x1y1) 

 Therefore, g1g2= g2g1 

Hence, G is an abelian group. 

7.6.3: Self Assessment Question: Prove that any group of order 1225 is abelian. 

7.6.4: Example: We shall prove that any group of order 72 is not simple. Let G be   a group 

of order 72. Then, O(G) = 72 = 23.32. The number of 3-Sylow subgroups of G is 1+3K for some 
integer k  0 and (1+3k) | o(G) = 72. Since (32, 1+3k) = 1, we have 1+3k |23. 

The only factors of 8 of the form 1+3k are 1 and 4. So, the number of  3-Sylow subgroups is 

1 or 4. If the number of 3 –Sylow subgroups is 1, then there is a unique 3-Sylow subgroup 

which  must be normal and is of order 32, so that it is a nontrivial proper normal subgroup  of G. 

Suppose the number of 3-Sylow subgroups is 4. Let P be a 3-Sylow subgroup of G. By 

lemma 7.5.5, : that is , i(N(P)) = 4. 

Since O(G)  i(N(P))!, it follows , by theorem (4.4.4) that N(P) contains a nontrivial normal 
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subgroup H of G. 

As H N(P)  G, H is a normal subgroup of G. 

Therefore G is not simple. 

7.6.5: Problem: Show that a group of order 108 has a normal subgroup of order 3k,        where    

k = 2 or 3. 

Solution: Let G be a group of order 108 = 23.33. By 7.5.6 and 7.6.1, the number of 3-Sylow 

subgroups of G is of the form 1+3k for some  integer k  0, and     (1+3k) | O(G) = 108. Since 

(33, 1+3k) =1, (1+3k)\23. Now k = 0 or 1. 

Case (i): Suppose k = 0 

Then 1 + 3k= 1+3(0) =1 

So, G has only one 3-Sylow subgroup which must be normal and is of order 33. 

Case (ii) : Suppose k =1.  

Then 1 +3k = 1+ 3(1) = 4. 

So, G has four 3–Sylow subgroups. Let A and B be any two 3 - Sylow subgroups  of G. Now 

O(A)= O(B) = 33. 

Since AB is a subgroup of A and B, O(AB)| O(A) = 33. So, O(AB)=1 or 3 or 32 

If O(A B) = 1 or 3, then 

|AB| =  > O (G ) = 22  33, which is a contradiction 

Therefore, O(AB) = 32 

We know that for a group of order pn, any subgroup of it of order pn-1 is a normal subgroup of 

it, where p is a prime and n is a positive integer. So, A  B is a normal subgroup of A and B. 

Therefore, A  N ( A  B ) and B  N ( A  B ) , where N ( A  B ) is the normalizer of A B in G 

and is a subgroup of G. 

So, AB  N ( A  B ) . But |AB| =  

We have O(N ( A  B)) 81 and O(N ( A  B)) |O(G) =  22  33. 

Therefore, O( N ( A  B))= O(G) and that N (A B ) = G. 

Hence, A B is a normal subgroup of G of order 32. 

7.6.6: Problem: Let G be a finite group of order pq where p,q are prime numbers and  p > q. 

If q  (p–1), then show that G is cyclic. 

Solution: Suppose q  (p–1). We shall prove that G is cyclic. The number of p- Sylow 

subgroups of G is of the form 1+pk for some integer k  0 and 1+pk | O(G) = pq. Since (p, 

1+pk) =1, 1+pk | q. 

It is possible only when k =0 as p > q. 

So, there is only one (1+p(0)=1) p-Sylow subgroup A of G of order p, which must  be normal in 

G. The number of q-Sylow subgroups of G is of the form 1+qk for some integer k  0 , and 

1+qk | O(G) = pq. 

Since (q,1+qk) =1, 1+qk | p 

Since p is prime and p > q , 1+qk = 1 or p 

If 1+qk = p, then qk = p –1 and that q | (p–1), a contradiction to q   (p–1). So 1+qk =1; that is 

the number of q -Sylow subgroups of G is 1. Thus there exists a unique q-Sylow subgroup B 

of G of order q which must be normal in G. Since each of A and B has order a prime 

number, both A and B are cyclic and that A = (a) for some e  aA, B = (b) for some e  bB. 

Observe that A B= {e} as O(A) = p and O(B) = q are prime numbers with p > q. 
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Now AB is a normal subgroup of G and O(AB) =    = O(A) . O(B) = pq = O(G) and 

that G = AB. We show now that O(ab) = pq. 

Since A and B are normal subgroups of G and aA, bB and A  B ={e}, we have ab = ba. 

Consider (ab)pq = (ab) (ab)……..(ab) ( pq times) 

= apq bpq 

= ( a 
p 

)
q 

(b
q 

)
p
 

= eq.ep                   (  O(a) = p & O(b) = q) 

= e.e = e  

Suppose n is a positive integer and (ab)n = e. Then anbn = e and that a–n = bn  A B ={e} 

implies an = e and bn = e. Since O(a) = p amd O(b) = q, p|n and   q|n, so that pq |n as (p,q)=1. Thus     

n  pq. Therefore, pq is the least positive integer such that (ab)pq = e. This is to say that    

O(ab) = pq. Hence G = (ab) is a cyclic group. 

7.7. MODEL EXAMINATION QUESTIONS: 

7.7.1. State and prove Sylow’s theorem–I 

7.7.2. Define the concept of a p-Sylow subgroup and prove that any two p-Sylow  

subgroups of a finite group are conjugate. 

7.7.3: State and prove Sylow’s theorem - III 

7.7.4: Prove that the number of p-Sylow subgroups of a finite goup G is a divisor of        

O(G) and is of the form 1+ pk, k  0. 

7.8. EXERCISE: 

7.8.1: Prove that any group of order 1986 is not simple. 

7.8.2: If G is a group of order 385, show that its 11-Sylow subgroup is normal and its 7-Sylow 

subgroup is in the center of G. 

7.9 SUMMARY:  

In this lesson we have learnt the three Sylow’s theorems on the existence of p-Sylow 

subgroups of a finite group. Using these Sylow’s theorems, we have determined the structure 

of certain group of given orders. 

7.10 TECHNICAL TERMS: 

 P-Sylow subgroup   

 Conjugate subgroups  

 Sylow’s theorems 

  Normalizer N(P)  

 Double coset A x B  

 Simple group 

 Cyclic group 

7.11  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

7.2.2: Since  we   have p | p and p | p m. Therefore, p | p m  i    p | p i . 

7.2.4: Let G be a group of order 2500 = 54.22. We have 53 | O(G) and 5 is prime. By 

theorem 7.2.3, G has a subgroup of order 53=125. 

7.2.6:  We may assume that O(G) = pn where n  +.We shall use induction on n. If n =1, 
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then {e} and G are subgroups of orders po and p1 respectively. Now suppose that n > 1 and 

assume that the result is true for all groups of order pm, m <n. Then by theorem 6.4.1, Z(G)  
{e}. Since Z(G) is a subgroup of G, O(Z(G)) | O(G)= pn and hence O(Z(G)) = p ,  >o. Since             

p | O(Z(G)), by Cauchy’s theorem, Z(G) has an element of order p. Let e  aZ(G) and ap =e. 

Now (a) is a normal subgroup of G (since ax =xa for all xG) and G/(a) is of order pn–1. Since pr 

|O(G), 0 < r  n, We have (G/(a)) and hence G/(a) has a subgroup of order . If K is a 

subgroup of G/(a), then the subgroup H defined by H ={x G | (a) x  K} has order pr in G , 

(since H/(a) = k and (a) =p). 

7.2.7: This follows from the facts that 81 = 34, 34|405 and 3 is prime and by theorem 7.2.3, 

G has a subgroup of order 34 = 81, if o(G) = 405. 

7.4.4: Since 1B  = B, we have   j = B and hence B   j B .  

Now for any      p  1 and b1,b2 B,  

 

                                        B  

                      B     

 B for some 0 k  p1 (since  p = e ) 

Thus H is a subgroup of . 

7.4.5: By lemma 7.4.2,    n(k)   = 1+p+p2+ ......................... +pk–1 

    = 1+p(1+p+p2+………+pk-2) 

    = 1+ p.n(k–1). 

7.4.10: This follows from the fact that the double cosets A x B, xG, form a partition of G and 

by lemma 7.4.8.   
7.5.2: (i) O(S3) = 3!=6 and the order of any 2-Sylow subgroup of S3 must be 2. Let       

f = (1 2) , g = (2 3) and h = (3 1). Then (f), (g) and (h) are all the 2-Sylow subgroups of S3      
(Note that the number of 2-Sylow subgroups of S3 is a divisor of 6 and is of the form 1+2k 

and hence it is 1 or 3 ; In this case, it is 3). 

(ii) O(A4 ) =12 and hence the order of any 2-Sylow subgroups is 22 = 4 and there are three 2-

Sylow subgroups in A4. 

7.5.3: Let P be a p-Sylow subgroup of G. Then any p-Sylow subgroup is of the form xpx–1 

for some xG. Therefore 

P is unique  xPx–1 = P for all x G 

 P is normal. 

7.5.6: Let P be a p-Sylow subgroup of G and let N(P) be the normalizer of p. We know that the 

number of p-Sylow subgroups is equal to  

Since P  N(p), we have i(p) =  =   (since O(p) | O(N(p))) and hence  

is a divisor of i(P). 

7.6.3: 1225 = 52 x 72 and now imitate the argument given in 7.6.2. 
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LESSON -8 

DIRECT PRODUCTS 
 

OBJECTIVES: 

The objectives of this lesson are to 

 define the concept of an external direct product of groups and quote certain  examples  

 define the notion of an internal direct product and prove that any internal direct product 

is isomorphic to an external direct product and vice- versa. 

STRUCTURE: 

 8.1. Introduction 

 8.2. External Direct Products 

 8.3. Internal Direct products 

 8.4. Model Examination Questions 

 8.5. Exercises  

 8.6  Summary 

 8.7  Technical Terms 

 8.8  Answers to self Assessment Questions 

8.9  Suggested Readings  

8.1. INTRODUCTION:  

If (A, •) and (B, ) are any two groups, we can define a binary operat ion on the Cartesian 

product A x B in a natural way as (a
1
, b

1
) . (a

2
, b

2
) = (a

1
.a

2
, b

1 
 b

2
), and with respect to this 

binary operation, A x B becomes a group whose properties largely depend on those of A and 

B. In this lesson we discuss certain necessary and sufficient conditions for a group G to be 

represented as A x B where A and B are groups again. 

8.2. EXTERNAL DIRECT PRODUCTS:  

We are already in the habit of using the same symbol ‘+’ to denote the addition of real 

numbers, addition of complex numbers, addition of matrices, addition of functions and on 

several other occasions. There is no ambiguity if we are aware of what elements are to be 

added. Therefore, we have agreed to denote the binary operation on an abstract group by the 

symbol, and even this is not mentioned explicitly, with this understanding, we are simply 

saying that “G is a group” instead of “ (G, •) is a group”. 

8.2.1: Definition: Let A and B be two groups. Define a binary operation‘•’on the Cartesian 

product A x B as follows: 

For any (a
1
, b

1
) , (a

2
, b

2
)  A x B, define 

(a
1
, b

1
) . (a

2
, b

2
) = (a

1
. a

2
, b

1
. b

2
) where a

1
. a

2 
is the product of a

1
  and a

2
 in A and b

1
. b

2
 is the 

product of b
1 

and b
2
 in B. A x B is called the external direct product of A and B and the 

binary operation defined on A x B is called as component wise operation. 

8.2.2. Theorem: Let A and B be two groups. Then A x B is a group under the binary 

operation defined as above. 

Proof: Let (a, b), (a1, b1), (a11, b11) A x B 
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Now ((a, b).(a1, b1)).(a11, b11)   

                                = (aa1, bb1).(a11, b11) 

                                = ((aa1)a11, (bb1)b11) 

                               = (a(a1a11), b(b1b11))  (by the associatively in A and B) 

                               = (a, b).(a1a11, b1b11) 

                               = (a, b)((a1,b1).(a11, b11)) 

Therefore‘•’is associative in A x B 

Let e and e1 denote the identity elements in A and B, respectively. 

Then (e, e1)  A x B,  

and (a, b)(e, e1)  = (ae, be1) 

   = (a, b) 

   = (ea, e1b) 

   = (e, e1)(a, b) 

Therefore, (e, e1) is the identity element in A x B. 

We have a–1  A and b–1 B. So, (a–1, b–1) Ax B and  

(a, b). (a–1, b–1)    = (aa–1, bb–1) 

                            = (e, e) 

                            = (a–1a, b–1b) 

                             = (a–1, b–1).(a, b) 

Therefore, (a–1, b–1) is the inverse of (a, b) in A x B; That is, (a, b)–1 = (a–1, b–1) 

Hence, A x B is a group. 

The above idea can be extended to the product of any finite number of groups. Explicitly we 

have the following theorem. 

8.2.3: Theorem: Let G
1
, G

2
, ............, G

n be groups and G = G
1
x G

2
x ..........x G

n
, the 

cartesian product of G
1
, G

2
, ..........., G

n
. Then G is a group under component wise product   

[G is called the (external) direct product of G
1
, G

2
, ……, G

n
]. 

Proof: Let (g1, g2, …., gn), ( , , ….,  ), (   G 

( i )  (g1, g2, …., gn)( , , ….,  ) = (g1 , g2 , ….., gn  )  G.  

(ii)   (g1, g2, …., gn)(( , , ….,  )( )     

                         = (g1, g2, …., gn) (    

                         = (g1( ), g2( , ……, gn( )  

                         = ((g1 , (g2 , ……, (gn )   
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                         = (g1 , g2 , ….., gn ) (    

                         = ((g1, g2, …., gn)( , , …., )) (    

Therefore, ‘•’is associative in G.  

(iii )  Let e
i denote the identity element of G

i
, 1 i n 

Then (e
1
, e

2
, …., e

n
)  G and 

(e
1
, e

2
, …., e

n
)(g

1
, g

2
,......, g

n
) = (e

1
g

1
, e

2
g

2
, ........, e

n
g

n
) 

= (g
1
, g

2
,......, g

n
) 

= (g
1
e

1
, g

2
e

2 ,..., gn
e

n
) 

= (g
1
, g

2
,......, g

n
)( e

1
, e

2
, …., e

n
) 

Therefore, (e
1
, e

2
, …., e

n
) is the identity element of G. 

(iv ) We have  Gi, 1in.  

So,  ( , ……., )  G and  

(g
1
, g

2
,......, g

n
)( , ……., ) = (e

1
, e

2
, …., e

n
) 

= ( , ……., ) (g
1
, g

2
,......, g

n
) 

Therefore ( , ……., ) is the inverse of (g
1
, g

2
,......, g

n
) in G or equivalently 

(g
1
, g

2
,......, g

n
)-1 = ( , ……., )   

 Thus, G is a group. 

8.2.4. Self Assessment Question: Let A and B be groups, a  A and b  B. Suppose O(a) = n 

in A and O(b) = m in B. Then prove that O(a,b) = l.c.m of{n,m}in A x B.  

8.3. INTERNAL DIRECT PRODUCTS: 

Take the additive group Z6 of integers modulo 6. Then Z6 = {0, 1, 2, 3, 4, 5}. 

Let A = {0, 3} and B = {0,  2, 4}. Now A and B are subgroups of  Z
6
. 

So, we can treat A and B as groups on their own. It can be easily verified that every element x 

in Z6 has a unique representation of the form x = a + b with a A and b B. 

Also, the map (a, b)  a + b: A x B → Z6 is an isomorphism of A x B onto Z6. Hence Z6 is   

isomorphic to the external direct product of the groups A and B. This motivates the 

following. 

8.3.1. Definition: Let G be a group and N
1
, N

2
, ........., N

k
  be normal subgroups of G. Then 

G is called internal direct product of N
1
, N

2
, ........., N

k
 if 

(i) G = N
1
N

2
.......N

k
,  and 
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(ii)  every element g  G can be uniquely expressed as g = a
1
a

2…..an with a
i  N

i, 1 i k. 

 

8.3.2. Lemma: Let N
1
, N

2
, ........., N

k be normal subgroups of a group G such that G is the 

internal direct product of N
1
, N

2
, ........., N

k
. Then the following hold for any i  j. 

(i) N
i

 N
j = {e}. 

(ii) ab = ba for any a  N
i and b  N

j
. 

Proof: Let1 i j k 

(i) Let x  Ni  Nj.Then x  G = N1N2………...Nk. 

This implies that x  = e...... e xe.....e and 

  ith
 

 x = e.......e......e xe.....e 

                          ith         j
th 

                                     
Since G is the internal direct product of N

1
, N

2
, ....., Nk, the element x  G has a unique 

representation as a product of elements of Ni, I = 1, 2, ....., k. So, x = e. Therefore, Ni  Nj = 

{e}. 

(ii) Let a  Ni and b  Nj 

Consider aba–1b–1 = a(ba–1b–1)  Ni (since a  Ni and Ni is normal)   

                              = (aba–1) b–1 
 Nj (since b  Nj and Nj is normal) 

Therefore, aba–1b–1  Ni  Nj = {e} and  

hence aba–1b–1 = e; 

That is, ab = ba 

8.3.3. Theorem: Let G be a group and suppose that G is the internal direct product of its 

normal subgroups N
1
, N

2
, ......, N

k
. Let T  = N

1 x N
2 x….x N

k
, the external direct product of 

N
1
, N

2
, ......, N

k
. Then T is isomorphic to G. 

Proof: Define f: T→G by f(x
1
, x

2
, ....., x

k
) = x

1
x

2
.....x

k for all (x
1
, x

2
, ....., x

k
)  T. 

By lemma 8.3.2 (ii), we have ab = ba for all a  N
i and bϵN

j and i  j……..(1) 

We show that f is an isomorphism. Let  (x
1
, x

2
, ....., x

k
), (y

1
, y

2
, …, y

k
)  T. 

(i) Now h((x
1
, x

2
, ....., x

k
)( y

1
, y

2
, …, y

k
)) 

= h(x
1
y

1
, x

2
y

2
, ….., x

k
y

k
) 

= ( x
1
y

1
)( x

2
y

2
) ....... (x

k
y

k
) 

= x
1
(y

1
x

2
)y

2
x

3
y

3
..........x

k
y

k (by(1)) 

= x
1
 (x2y1)y

2
x

3
y

3
........ x

k
y

k
 

= x
1
x

2
x

3
y

1
y

2
y

3
x

4
y

4
........x

k
y

k
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= (x
1
, x

2
, ....., x

k
)( y

1
, y

2
, …, y

k
) 

= h(x
1
, x

2
, ....., x

k
)h(y

1
, y

2
, …, y

k
) 

Therefore, h is a homomorphism. 

(ii) Suppose that h(x
1
, x

2
, ....., x

k
) = h(y

1
, y

2
, …, y

k
) 

Then x
1
x

2
.....x

k
 = y

1
y

2
........y

k
 

Since G is the internal direct product of N
1
, N

2
, ......., N

k and x
i
, y

i 
 N

i
, 1  i  k, 

we have x
1 = y

1
, x

2 = y
2
, ......., x

k
 = y

k
   

So, (x
1
, x

2
, ...........,  x

k
) = (y

1
, y

2
, …, y

k
) 

Therefore, h is one-one. 

(iii) Let g G. Now g = n
1
n

2
........n

k   for some n
i  N

i
,1 i k. So(n

1
, n

2
, …, n

k
)  T and 

T(n
1
, n

2
, ......., n

k
) = n

1
n

2
.......n

k = g 

Therefore, T is onto G. Hence, T is isomorphic to G.  

8.3.5. Theorem: Let G
1
, G

2
, …, G

n 
be groups and G = G

1
x G

2
x.....x G

n
, the external direct 

product of G
1
, G

2
, …, G

n
. For any 1 i n, let i = {(e

1
,...e

i–1
, g

i, ei+1
......., e

n )   / gi G
i}. 

Then each i is a normal subgroup of G, G is the internal direct product of 1, 2,…., n  and 

G
i  is isomorphic to i, 1in. 

Proof: Fix 1in.  

Clearly i  G and  i  as (e1, e2, …, en)  i  We shall prove that i is a normal 

subgroup of G.  

Let (e1, …ei-1, gi, ei+1…, en), (e1, e2, …ei-1, gi
1, ei+1…, en)  i and (x1, x2,….., xn)  G 

(i) (e1, …ei-1, gi, ei+1…, en)(e1, e2, …, ei-1, gi
1, ei+1…, en)=(e1, e2, ..ei-1, gigi

1, ei+1.., en) i  

(ii ) (e1, …ei-1, gi, ei+1…, en)
-1=(e1, e2, …ei-1, gi

-1, ei+1…, en) i  

 So, i is a subgroup of G. 

 (iii ) Now  (x1, .., xi-1, xi, xi+1 ,.., xn) (e1, …ei-1, gi, ei+1…, en) (x1, .., xi-1, xi, xi+1, .., xn)
-1 

 = (e1, …ei-1, xigixi
-1, ei+1…, en) i . 

Therefore, i is a normal subgroup of G, 1 i n. 

Also, for any g = (g
1
, g

2
, ......, g

n
)  G, we can write 

g = (g
1
, e

2
, …, e

n
).( e

1
, g

2
, e

3
, …, e

n
).........( e

1
, e

2
, …,  e

n – 1
, g

n
)  1 2...... n 

Therefore any element of G can be expressed as an element in the product 1 2...... n. It can 

be easily verified that this representation is unique also. 

Hence, G is the internal direct product of 1, 2,…., n. Now for any 1 i n, define fi: Gi 

→ i  by fi(gi) = (e
1
, ....., e

i – 1
, g

i
, e

i + 1
,......., e

n
)for all gi Gi. It is easy to see that fi is an 

isomorphism. Hence, Gi  i . 1 i n. 
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8.3.6: Problem: Let G be a group and N
1
, N

2
, ....., Nk be normal subgroups of G. Then 

prove that G is the internal direct product of N
1
, N

2
, ....., Nk, if and only if, the following are 

satisfied. 

(i) ........................... G = N
1
N

2
.......N

k
 

(ii)  For each 1 i n, Ni ( N
1
N

2
.......N

i–1
N

i+1
.......N

k
) = {e} 

Solution: First assume that G is the internal direct product of N
1
, N

2
, ....., Nk.  

Then any element g of G can be uniquely expressed as g = a1a2….ak where ai Ni, 1 i k. 

This implies that G = N
1
N

2
.......N

k
.  Fix 1 i k. 

Let a Ni  (N1N2,...Ni–1Ni+1.....Nk). Then a Ni and a=a1a2.....ai–1ai+1.......anfor 

some aj  Nj all j  i. 

So, ee...e.a.e......e = a = a1a2.....ai-1eai+1.....ak  N1N2.....Nk= G. 

By the uniqueness, it follows that aj = e for all j  i and a = e.  

Therefore Ni  (N1N2,...Ni–1,Ni+1.....Nk) = {e} for i = 1,2,…,k 

Conversely, assume the conditions (i) and (ii). 

We shall show that G is the internal direct product of N1,N2, .....,Nk 

Let g G and g = a
1
a

2
.....a

k = b
1
b

2
........b

k where ai, bi  Ni for i=1, 2, ...., k. Fix 1 i k.   

Then we have a
1
a

2
.....a

i
 =  b1b2.....bk ……  

 ai = ….. b1b2  ……bk ….   ( 

Let 1 j n with j  i be fixed.  

Clearly, Nj  N1N2….Ni-1Ni+1…..Nk 

So, Ni Nj  Ni  (N1N2.......Ni–1Ni+1…Nk) ={e} 

and that Ni Nj = {e}.Since Ni and Nj are normal subgroups of G, by 8.3.2, we 

have ab = ba for all a  Ni and b  Nj. So, (α) becomes 

ai = …..( ( )……( bk)bi  

 ai  = b1) …… bi-1) bi+1)…… bk)  

Now ai  Ni  (N1N2.......Ni–1Ni+1….  Nk) = {e} 

 ai = bi, 1 i k. 

Therefore every element g in G has a unique representation of the form g = a1.a2…ak  with  

ai  Ni, 1 i k. 

Hence G is the internal direct product of N1,N2, ……, Nk. 

8.3.7. Problem: Any finite abelian group is the (internal) direct product of its p-Sylow 

subgroups. 

Solution: Let G be a finite abelian group and o(G) = n > 1. 
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Now n = , where p1, p2, …, pk are distinct primes and α1, α2 ,........., αk  are 

positive integers. By Sylow’s theorem-I, G has a pi-Sylow subgroup Ni of order  ,1i k. 

Since G is abelian, each Ni, 1 jk is a normal subgroup of G. We show now that G is the 

internal direct product of its normal subgroups N1,N2,…,Nk. 

Let x N1  N2. Then o(x) |o(N1) = and o(x) |o(N2) = .  

So, O(x) | ( ) =1 and that o(x) =1 and that x = e. Therefore, N1 N2={e} and O(N1N2) 

=  =  = = O(  

Let y  N3    N1N2. 

Now O (y)│O (N3) and O(y)│O(N1N2) =  

So, O(y)│( ) =1 and that o(y) = 1 and that y = e.  

Therefore N3    N1N2  = {e} and 

O(N1N2 N3) =   =    

                   = O(N1N2).O(N3) 

Continuing this we get that Ni  N1N2.......Ni–1 = {e} for i = 2,3,….,k and  

O(N1,N2,….,Nk) =  = n. 

Since N1N2........Nk is a normal subgroup of G and O(G) = n, we have that G = N1N2….Nk. 

Hence, G is an internal direct product of its p-Sylow subgroups N1,N2, ……, Nk. 

8.4. MODEL EXAMINATION QUESTIONS: 

8.4.1. If G1,G2, ............, Gn are groups, Prove that the product G = G1 x G2 x … x Gn is also 

a group under coordinate wise operation. 

8.4.2. Define the notion of an internal direct product and prove that it is isomorphic to an 

external direct product. 

8.4.3. Let G=G1x G2x……x Gn, where each Gi is a group. Then prove that there exist 

normal subgroups N1,N2,.........,Nn of G such that G is the internal direct product of 

N1,N2,.........,Nn and Gi Ni  for all1 i  n. 

8.5. EXERCISES: 

8.5.1. Let G1, G2,..........,Gn be groups and G = G1x G2 x ….x Gn. Then prove that there are 

normal subgroups N1, N2, ........, Nn of G such that G/Ni Gi for all1in. 

8.5.2. For any groups G1,G2,G3, 



Center for Distance Education  8.8   Acharya Nagarjuna University 

Prove that G1x G2  G2x G1 and (G1x G2)x G3 G1x(G2x G3). 

8.5.3. Let G be a group and let T = G x G. Let D = {(g, g)  G x G | g  G}. Then prove   

that D is a subgroup of T and D G. Also, prove that D is normal in G if and only if G is 

abelian. 

8.6  SUMMARY: 

In this lesson, we have learnt the concepts of an external direct product and an internal direct 

product and proved that these two are same, upto isomorphism. 

8.7  TECHNICAL TERMS: 

 External direct product  

 Normal subgroup  

 Internal direct product  

 Isomorphism 

8.8  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

8.2.4. n is the smallest positive integer such that an = e and similarly m for b. 

Let k = l.c.m of {n,m}. We prove that k is the smallest positive integer such that (a, b)k =(e, 

e), the identity element in A x B. Since n│k and m│k, we have that k = ns and k = mt for 

some positive integer s and t. 

Now(a, b)k = (ak,bk) = (ans,bmt)  

                   = , ) 

                  = (es, et)  

                  = (e, e) 

Also, for any positive integer u, 

(a,b)u=(e,e)      (au, bu) = (e, e) 

au = e and bu = e 

o(a)│u and o(b)│u 

n│u and m│u 

k│u 

k u  
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Therefore, k is the smallest positive integer such that (a,b)k = (e,e) and hence O(a, b) = l.c.m 

{O(a), O(b)} 
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LESSON -9 

FINITE ABELIAN GROUPS 
 

OBJECTIVES: 

The objectives of this lesson are to 

 prove that any finite abelian group is a direct product of cyclic groups. 

 define the notion of invariants of a finite abelian group and prove that any two      

abelian groups of order pn are isomorphic if and only if they have the same invariants. 

 derive a formula for the number of non-isomorphic abelian groups of given order. 

STRUCTURE: 

 9.1. Introduction 

 9.2. Fundamental theorem on finite abelian groups 

 9.3. Invariants 

 9.4. Abelian groups of a given order 

 9.5. Model examination questions 

 9.6. Exercises 

 9.7  Summary 

 9.8  Technical terms 

 9.9  Answers to self assessment questions 

     9.10 Suggested Readings  

9.1. INTRODUCTION: 

In this lesson, we pay special attention to finite abelian groups. The reason is that no 

other general class of groups has the structure as completely known as easily described. When 

one is setting up a structure theory, the overall strategy is to express the complicated algebraic 

systems in terms of those better behaved we accomplish this in the present lesson by proving 

that any finite abelian  group is a direct product of cyclic groups. We also derive at a formula 

to know the number of (non-isomorphic) abelian groups of a given order. 

9.2: FUNDAMENTAL THEOREM ON FINITE ABELIAN GROUPS: 

 It is well known that any cyclic group is abelian and that any finite cyclic group must 

be isomorphic to the additive group Zn of integers modulo n, where n is the order of the 

group. In this section we prove that any finite abelian group must be a direct product of finite 

cyclic groups. That is, in a sense, the finite cyclic groups(or Zn’s) are like building blocks in 

the theory of finite abelian groups. 

9.2.1: THEOREM (FUNDAMENTAL THEOREM ON FINITE ABELIAN GROUPS): 

Every finite abelian group is the direct product of cyclic groups. 

Proof: Since any finite abelian group is the direct product of its p-Sylow subgroups (by 

8.3.7), it is enough to prove that any abelian group of order pn, where p is a prime number 

and n is a positive integer, is a direct product of cyclic groups. Let G be a finite abelian 

group of order pn, where p is a prime and n is a positive integer. Since o(G) = pn, we know 

that the order of every element of G must be a power of p. We get an element a1ϵG of 

largest order among the elements of G and O(a1) = pk (kn). Consider the cyclic subgroup 
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A1 = (a1)={e,a1, ......., } of G.  

If k = n, then A1 = G, so that G itself is cyclic in which case the theorem is trivial. Suppose 

that k < n. Then A1 is a proper nontrivial subgroup of G. Now, consider the quotient group  

G/ A1. As G is abelian, G/A1 is an abelian group and O(G/A1) =  =  = p n-k .  

We get an element A1b2   G/A1 of largest order among the elements of G/A1 and O(A1b2) = 

 

We have that  is the least positive integer such that = A1. 

That is,  = A1, This implies that  . 

Suppose that (b2)  A1  {e}.  

Now  =  for some positive integer 1  i  (   = (a1)) 

Since O(a1) is largest, O(b2)= , O(a1) = . Also O(b2) | O(G) = pn  implies O(a2)  is a 

power of p.   

So,  = e  . Therefore,  = A1 = A1 e = A1, so that  |  and that 

n1 n2.  

Now   =  =  = e and hence  and that i = j  for 

some integer j. 

Put a2 = b2. Then a2 A1b2 and hence A1a2 = A1b2 

Also,  = (  = .   

                                            =  

                                            =       = e. 

Therefore,  = e and hence o(a2)| . 

Let t be a positive integer and = e.  

Now e =  = ( )t = .  

So,  =   . Since  is the least positive integer with  , we have that 

t, so that O( ) = . 

Put A2 = ( ). Let x  A1 A2. 

Then x  A1 = (a1) and x  A2 = ( ). 

Now x =  for some integer l and that  

X = = ( )l =   A1 A2, and hence =   A1;that is  = A1; 

that is, (A1b2)
l = . Therefore, | l, and so x = = e. 

Hence, A1 A2 = {e}.  
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If G = A1 A2, then G is the internal direct product of A1 and A2.  

Suppose that G A1A2. Now, consider the quotient group G/A1A2. Let A1 A2b3 be an 

element of largest order in G/A1A2 and O(A1A2b3) = .  

Now  = e  A1A2; that is  =  = A1A2. 

Therefore |  and so n3  n2. 

If A1A2  ={e}, we get the result . 

Suppose that A1A2  {e}. 

We have  A1A2 (since O(A1A2b3) = ) 

So,  , for some integer i1 & i2. 

Consider  =   =  A1. 

  =  A1. 

    A1. 

Since O(A1A2) = , we have  | i2. , and so i2 = j2 , for some integer j2. 

Also,  =   

                                  =  = e. 

This is to say that  =   A1  A2 ={e} 

That is, = e. As O(A1)= , | i1  

This yields that |i1. This implies that, i1 = j1   for some integer j1. Let a3 = .  

Then  = (  

       = .  

                   =  

                   = e   (since = ) 

Let ‘s’ be a positive integer such that =e.  

Now e =   = (  = . .  

So, = .   A1A2 and that  

A1A2  = A1A2 and that (A1A2  = A1A2 

Since O(A1A2b3) = , | t so that t   

Therefore, O(a3) = .  Put A3 = (a3) 

Let y  A3  A1A2. Then y =  =   for some integers l1, l2 and l3  
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Since a3 = , .b3, we have that  =  =  

This is to say that   A1A2 and that  

A1A2  = A1A2 and that (A1A2  = A1A2 

So, | l3 (since O(A1A2b3= ); that is, l3 = k  for some integer k.  

Therefore, y= =   

                           = ( k  

                           = ek  

                           = e. 

Hence, A3  A1A2 = {e}. 

If G = A1A2A3, we get the result. Otherwise, we continue the process and we get that G = 

A1A2A3...........Ak, where Ai = (ai), 1 i k, and Ai A1A2.......Ai–1={e}for i = 2,3......,k. 

Thus, G is the internal direct product of cyclic groups A1,A2, …, Ak. 

9.2.2. Self Assessment Question: Give an example of a non-cyclic abelian group of order 

pn, where p is a given prime and n > 1. 

9.3. INVARIANTS:  

With any abelian group of order pn, we shall associate a finite sequence of positive integers 

whose sum is n and these integers are called the invariants of the group .This help us in 

getting a formula for the number of distinct (non-isomorphic) abelian groups of order pn, 

where p is a given prime and n is a positive integer. 

9.3.1. Definition: Let G be an abelian group of order pn, where p is a prime and n is a 

positive integer. Suppose that G = A1A2…….AK, the internal direct product of cyclic 

subgroups Ai, 1 i k, and O(Ai)=
, 1  i k with n1 n2 nk > 0. Then the integers 

n1,n2,….,nk are called the invariants of G.  

Note that the subgroups A1, A2, …, Ak and their generators in the definition (9.3.1) of 

invariants are not unique. For, consider the following. 

9.3.2. Example: Let G= {e,a,b,ab} with a2 = e = b2 and ab = ba. Then G is an abelian group 

of order 22. Let A={e, a}, B= {e, b} and c={e, ab}. Then A, B and C are three distinct 

cyclic subgroups of G, and G = AB, G = AC and G = BC are three different decompositions 

of G into products of cyclic subgroups though the invariants obtained are same. 

9.3.3. Self Assessment Questions: What are the invariants of the group G given in 9.32. 

9.3.4. Definition: Let G be an abelian group and s be an integer.  

Then G(s) = {g G/gs = e} 

Note that G(s) is a subgroup of G. 
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9.3.5. Lemma: Let G, G1 be isomorphic abelian groups and s be an integer. Then G(s) and 

G1(s) are also isomorphic. 

Proof: Let  be an isomorphism of G onto G1. 

We shall prove that  maps G(s) isomorphically onto G1(s).  

First we prove that (G(s)) = G1(s) 

Let x G(s).Then we have xs = e, and hence ( (x))s = (xs) = (e) = e1, the identity in G1.  

So, (x) G1(s). Therefore,  (G(s))  G1(s). 

Let u G1(s). Then us=e1. But, since  is onto, u = (y) for some y G.  

Therefore, e1 = us = ( (y))s = (ys). Because  is one-to-one, we have ys = e and so y G(s) 

and hence u = (y) (G(s)). Therefore, G1(s)  (G(s)) and hence (G(s)) = G1(s). Thus 

 maps G(s) onto G1(s). Therefore since  is one to one, onto and a homomorphism from 

G(s) to G1(s), we have that G(s) and G1(s) are isomorphic. 

9.3.6. Lemma: Let G be an abelian group of order pn, where p is a prime and n is a positive 

integer. Suppose that G= A1A2............AK, an internal direct product, where each Ai = (ai) is 

cyclic of order , 1 i k and n1 n2 ….nk > 0. If m is an integer such that nt >m nt+1, 

then G(pm) = B1B2….BtAt+1.At+2……Ak, where Bi=(   and O(Bi) = pm, for i  t. The 

order of G (pm) is pu, where u=mt+   

Proof: We have that G = A1A2…….Ak, an internal direct product, where each Ai=(ai) is a 

cyclic subgroup of order , 1i k  and n1n2….nk>0.  

Consider G( ) = { x G/  = e } where ni > mn t + I . It is clear that  = e  

for all x  Aj, t+1 j  k as m nt+1 (since x  (aj) implies x =   for some 0 l  and  

= e). 

So, Aj  G(pm) for all t +1 jk. 

For 1jt, (  =  = e and  

                          = pm 

So, Bi = (   G(pm) and o(Bi) = pm for all 1 i  t. 

Since B1, B2, ……, Bt,  At+1, At+2, ….. , Ak are all contained in G(pm), their product is also 

contained in G(pm)…….(i) 

Let x  G(pm). Then  = e and x =  for some integers 0< li < ,  

i = 1,2,…..,k. 

So, e =  = ( ( …….(  and   Ai , 1 ik. 
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Since the product G = A1 A2….. Ak is direct,  = e for all 1 ik and so | li   for 

all 1 ik. For 1 ik, li . si for some integer si. So,  =  Bi   for all 

1 it.  

As x = , we see that x = ….. ….. 

….  

This is to say  that x B1B2….BtAt+1.At+2……Ak  

Therefore, G(pm)  B1B2….BtAt+1.At+2……Ak…… (ii)  

From (i) and (ii), we get G(pm) = B1B2….BtAt+1.At+2……Ak.  

Now O(G(pm)) = O(B1 ). O(B2 ) ….O(Bt ) O(At+1 ) O(At+2 )…… O(Ak) 

                         = pm.pm…..pm. ….  

                                (t – times ) 

                       = pmt. p  

Thus O(G(pm)) = pu, where u= mt +   

9.3.7. Corollary: Let G be an abelian group of order pn, where p is a prime and n is a positive 

integer. Suppose that G = A1A2..............Ak, an internal direct product, where each Ai = (ai) is 

cyclic of order , 1 i k and  n1 n2  ........ nk > 0. Then O(G(p)) = pk.  

Proof: By applying the lemma 9.3.6 to the case m =1, 

we have t = k and o (G(p)) = pk                                        (since u = 1k=k). 

9.3.8. Theorem: Let p be a prime and n be a positive integer. Then any two abelian groups of 

order pn are isomorphic if and only if they have the same invariants.  

Proof: Let G and G1 be two abelian groups and O(G) = O(G1) = pn.  

Suppose that G and G1 are isomorphic. Let n1, n2,........,nk be the invariants of  G and let m1, 

m2, ......., ml be the invariants of G1. Then G=A1 A2 ......Ak , an internal direct product, where 

Ai= (ai) is a cyclic subgroup of order  in G, 1i k and n1 n2 ........nk >0 and G1=B1 

B2 ..........Bl, an internal direct product, where Bj = (bj) is a cyclic subgroup of order  in 

G1, 1jl, m1 m2 …ml >0.  

Since G and G1 are isomorphic, by lemma 9.3.5, G(p) and G1(p) are also isomorphic.  

So, O(G(p)) = O(G1(p)). According to the corollary 9.3.7, O(G(p)) = pl and O(G1(P)) = pl.  

Hence pk = pl and so k = l. Thus the number of invariants for G and G1 is the same.  
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We shall show that nj=mj for all 1j k. Suppose ni mi for some 1ik.  

Let ‘t’ be the smallest integer such that 1t k and nt > mt. Then n1 = m1, n2 = m2,…, nt-1 = 

mt-1,nt > mt. 

Let m = mt. Put H = { / g G} and H1 = { / y G1}. Clearly, H and H1 are subgroups of 

G and G1, respectively. 

Let T: G→G1be an isomorphism of G onto G1.  

Now T (H) =H1. So, H is isomorphic to H1 

Because G = (a1)(a2)…..(ak), we get that 

H = ( )( …..( …..(  where ns >m  ns-1.             

Because G = (b1)(b2)….(bl) ,we get that 

             H1 =  ( )( …..(  

So, the number of invariants of H is st and the number of invariants of H1 is t–1  

As H and H1 are isomorphic, we have that s = t–1 and that t–1t, which is a contradiction. 

Therefore, ni= mifor all 1ik. 

Hence, G and G1 have the same invariants. Conversely, suppose that G and G1 have the same 

invariants n1, n2, ........, nk. Then G =A1A2.....Ak, an internal direct product and G1=B1 

B2....Bk, an internal direct product where Ai = (ai) and Bi = (bi) are cyclic subgroups of order  

p
ni  in G and G1, respectively and n1 n2 ........nk > 0. We shall prove that G and G1 are 

isomorphic. 

Define T: G→G1 by T(  

=  for all  G  

Since each element g G can be expressed uniquely as g=  with  Ai, 

1ik, it follows that T is well defined. 

Let  Ai, 1ik. 

Now  T(( ( )  

= T(  )  

=  

=  ( )  
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= T(  . T( ) 

Therefore, T is homomorphism. 

Suppose that T( ( . 

Then  

Since G1 is the internal direct product of B1 B2 ............Bk, we have  , for all 1ik. 

Now   = e for all 1ik. So,   for all 1ik. 

As O(ai) =   = e ; That is,  for all 1ik. 

So,  

Therefore, T is one -one 

Since T is one-one and O(G) = O(G1) = pn, T is onto. Hence, G and G1 are isomorphic. 

9.3.9. Self Assessment Question: For any positive integer m, prove that any two cyclic 

groups of order m are isomorphic. 

9.4. ABELIAN GROUPS OF A GIVEN ORDER: 

In this section, we derive a formula for the number of non-isomorphic finite abelian groups of 

a given order. 

Let us recall the following: For any positive integer n, by a partition of n we mean a sequence 

of positive integers n1, n2, ........., nk  such that n1n2…..nk and n1+n2+…..+nk= n. The 

set of all partitions of n is denoted by p(n). 

9.4.1. Theorem: For any positive integer n, the number of non-isomorphic abelian groups of 

order pn is equal to the number of partitions of n, where p is a given prime. 

Proof. Let n be a positive integer and p be a prime number. Let {n1,n2,.......,nk} be a partition 

of n. Then n = n1+n2+…..+nk and  n1 n2 ........nk >0.  

Now   ……  is an abelain group of order       

. …..  =  = pn .    

In this way we get p(n) number of abelian groups of order pn, where p(n) is the number of 

partitions of n. According to theorem 9.3.8, these are all non-isomorphic abelian groups of order 

pn. If G is an abelian group of order pn, then its invariants m1m2..........mt>0 (say) also a 

partition of n and this group is isomorphic to one of the p(n) abelian groups, which 

corresponds to the partition{m1,m2,…,mt}of n. Thus there are exactly p(n) number of non 

isomorphic abelian groups of order pn. 

9.4.2. Self Assessment Question: How many non-isomorphic abelian groups of order 81 are 

there?  List all these. 
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9.4.3. Corollary: Let p
1
, p

2
,....., pt  be distinct primes and n1, n2,......, nt  be positive integers. 

Then the number of non-isomorphic abelian groups of order  is equal to the 

product p(n1).p(n2)…..p(nt), where p(ni) is the number of partitions of ni. 

Proof. Let G be an abelian group of order  . Since G is abelian, G has 

unique pi-Sylow subgroup pi of order   , 1it. Moreover G = p1.p2.....pt, an internal 

direct product of its normal subgroups p1,p2,.....,pt . (see 8.3.7).  

Also, we have that if G1 and G2 are abelian groups of same order and G1=H1 H2 .....Hk, an 

internal direct product of its Sylow subgroups. H1,H2,..,Ht  and G2 = T1 .T2 .........Tk , an 

internal direct product of its Sylow subgroups T1, T2, ...., Tk  are isomorphic if and only if Hi 

Ti for all 1it, that is, the corresponding Sylow subgroups are isomorphic. Therefore, as 

there are p(ni) number of non-isomorphic abelian groups of order pi , 1it, we get that the 

number of non isomorphic abelian groups of order  is p(n1).p(n2) …p(nt). 

9.4.4. Self Assessment Question: How many non-isomorphic abelian groups of order 600 

are there and make a list of all these. 

9.4.5. Describe all the non-isomorphic abelian groups of order 1936. 

9.5. MODEL EXAMINATION QUESTIONS: 

9.5.1. State and prove the Fundamental theorem on finite abelian groups. 

9.5.2. For any prime p, prove that two abelian groups order pn are isomorphic if and only if 

they have the same invariants. 

9.5.3. For any prime p and any positive integer n, prove that the number of non-isomorphic 

abelian groups of order pn is equal to the number of partitions of n. 

9.5.4. State and derive a formula for the number of non-isomorphic finite abelian groups of a 

given order. 

9.6. EXERCISE: 

9.6.1. Describe all finite abelian groups of order 

a) 26 b) 116 c) 75 d)24.34 

9.6.2. If G is an abelian group of order pn, p a prime and    n1n2…..nk > 0 are the 

invariants of G, show that the maximal order of any element in G is .  

9.6.3. If a finite abelian group G has subgroups of orders m and n, prove that G has a 

subgroup whose order is the least common multiple of m and n.  

9.6.4. Let G be an abelian group of order pn with invariants n1n2…..nk > 0 and H {e}be a 

subgroup of G. If h1h2…..hs > 0 are the invariants of H, then show that k s and hi ni  

for i=1,2,…,s.  

9.6.5. Let G be a finite abelian group pn and  ibe the set of all homomorphisms of G into 

the group of nonzero complex numbers under multiplication. Prove that   is an abelian 

group under the operation defined by ( 1. 2) (g) = 1(g) 2(g) for all  1, 2  and g G.  
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9.6.6. For any and g G, show that (g) is a root of unity, if G is a finite abelian 

group. 

9.6.7. If G is a finite cyclic group, show that                                                         is also a cyclic group and O( ) = O(G). Hence 

G and are isomorphic.  

9.6.8. If G is a finite abelian group and x y  G, prove that there is a  with 

(x) (y). 

9.6.9. If G is a finite abelian group and 1  ,  show that  = 0. 

9.7  SUMMARY: 

In this lesson, you have learnt the fundamental theorem on finite abelian groups which states 

that any finite abelian group is a product of cyclic groups. We have introduced the notion of 

invariants of an abelian group of order pn, where p is a prime, and proved that two such 

groups are isomorphic if and only if they have the same invariants. Also, we have proved that 

the number of non-isomorphic abelian groups of order pn is equal to the number of partitions 

of n, and using this we have derived a formula for the number of non-isomorphic abelian 

groups of a given order. 

9.8  TECHNICAL TERMS: 

 Abelian group  

 Fundamental theorem  

 Cyclic group  

 Invariants 

 Partition 

9.9  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

9.2.2. Consider ZpZp............Zp (n times). This is an abelian group of order p.p….p (n-

times) = pn and is non-cyclic, since any element, except the identity, is of order p. 

9.3.3. O(G) = 4 = 22, O(A) = 2, O(B) = 2 and G = AB, an internal direct product of cyclic 

subgroups A and B. So, the invariants of G are 1, 1, ......... 

9.3.9. Let G be a cyclic group of order m. Then G = (a) for some a  G, whose order is m, and 

G = {e, a, a2,......., am–1}. It is easy to verify that i  a i  is an isomorphism of Zn onto G. 

Therefore G  Z. If H is another cyclic group of order m, then G Zm H and hence G H. 

9.4.2: 81 is of the form pn where p =3 is a prime and n =4 is a positive integer. By theorem 

9.4.1, the number of non-isomorphic abelian groups of order 34 is equal to the number of 

partitions of 4. But the number of partitions of 4 is 5. The partitions of 4 and the 

corresponding groups of order 34 are given below. 

{1,1,1,1}                               Z3Z3Z3Z3 

{1,1,2}                                    Z3Z3  

{1,3}                                         Z3  

{2,2}                                         
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{4}                                               , which is cyclic of order 34 =81 

9.4.4: Observe that 600 = 23 .52 .31. Now p (3) = 3 and p(2) = 2. So, by theorem 9.4.3, the 

number of non-isomorphic abelian groups of order 600 is p(3).p(2).p(1) = 3.2.1 = 6. To list 

all these six groups, we have to determine groups of orders 23, 52 and 31 and take products as 

below: 

Partitions of 3       Groups of order 23 

  {1,1,1}                       Z2Z2Z2 

   {1,2}                         Z2  

     {3}                           

The partitions of 2 are {1, 1} and {2} and hence Z5Z5 and  are the only groups of order 

52. Now, we can list all the abelian groups of order 23.52.31(=600) 

Z2Z2Z2Z5Z5Z3(Z2Z100Z3 Z6Z10Z10) 

Z2Z2Z2 Z3(Z6Z2Z50)  

Z2 Z5Z5Z3(Z10Z20Z3 Z30Z20) 

Z2 Z3(Z50Z12 Z4Z150) 

Z5Z5Z3 (Z40Z15 Z24Z5Z5) 

     

9.4.5. We have 1936 = 24.112. Now p(4) = 5 and p(2) =2. The numberof non-isomorphic 

abelian groups of order 1936 is p(4).p(2) = 5.2 =10. 

Partition of 4 Partition of 2 Groups of order 24.112 

                 {1,1,1,1}                   {1,1}                        Z2Z2Z2Z2Z11Z11 

                 {1,1,1,1}                   {2}                           Z2Z2Z2Z2  

                 {1,1,2}                      {1,1}                        Z2Z2 Z11Z11 

                 {1,1,2}                      {2}                           Z2Z2  

                  {1,3}                         {1,1}                          Z2 Z11Z11 

                  {1,3}                {2}                           Z2  

                  {2,2}                {1,1}                           Z11Z11 

                  {2,2}                {2}                            

                  {4}                            {1,1}                        Z11Z11 
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                  {4}                            {2}                             

9.10  SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 
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LESSON -10 

DEFINITIONS, EXAMPLES AND SOME SIMPLE 

REUSLTS OF RING THEORY 
 

OBJECTIVES: 

The objectives of this lesson are to 

 Introduce the concepts like ring, commutative ring, field, division ring. 

 Discuss some examples of rings. 

 Prove some fundamental results related to the known concepts. 

 Understand the relation between the concepts field and integral domain. 

STRUCTURE: 

 10.1. Introduction 

 10.2. Some definitions and examples 

 10.3. Integral domain 

 10.4. Some preliminary results on rings 

 10.5. Model examination questions 

 10.6  Summary 

 10.7  Technical terms 

 10.8  Answers to self assessment questions 

 10.9  Suggested Readings 

  

 10.1. INTRODUCTION: 

Ring is a fundamental abstract concept in the study of algebra. A group is equipped 

with only one binary operation where as a ring is equipped with two binary operations 

connected by some inter relations. We shall give an axiomatic definition of ring and study 

some of its elementary properties. 

Despite the differences, the analysis of rings will follow the pattern already laid out for 

groups. Study of rings serves as one of the fundamental building blocks for the abstract 

algebra. 

It is clear that the definition of a ring is an abstraction of the ring of integers. Although 

rings are a direct generalization of the integers, certain arithmetic facts to which we have 

become accustomed in the ring of integers need not hold in general rings. For instance, we 

know that the product of two non-zero integers is non-zero, but this may no longer be true in a 

general ring. In the ring of 2 x 2 matrices, we will come across the situation that 

. Thus even though both   and  are non zero, their 

product is zero in the ring of 2 x 2 matrices. This leads to the study of some special class of 

rings. Integral domains, division rings and fields. Also we state the pigeon hole principle which 

is useful in proving the theorem that states that ‘a finite integral domain is a field’. 

10.2. SOME DEFINITIONS AND EXAMPLES: 

10.2.1. Definition. A non - empty set R is said to be an associative ring if in R there are 

defined two operations, denoted by  +  and • respectively, such that for all a, b, c in R. 
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(i) a  + b is in R 

(ii) a + b = b + a  

(iii) (a + b) + c = a + (b + c) 

(iv) There is an element 0 in R such that a + 0 = a for every a in R. 

(v) There exists an element –a in R such that a + (–a)= 0 . 

(vi) a.b is in R 

(vii) a.(b.c) = (a.b).c 

(viii) a.(b+c) = a.b +a.c and 

(ix) (b+c).a = b.a + c.a 

Axioms (i) through (v) merely state that R is an abelian group under the operation +, which 

we call addition. Axioms (vi) and (vii) insist that R be closed under an associative operation; 

which we call multiplication. Axioms (viii) and (ix) Serves to inter relate the two operations 

of R. 

10.2.2. Definition. Let (R, +,  • ) be a ring. If there is an element 1 in R such that a.1 = 

1.a = a for every a in R then R is said to be a ring with unit element. If the  multiplication of R 

is such that a.b = b.a for every a, b in R then we call R a commutative ring. 

10.2.3. Example. Let R be the set of integers, positive, negative, and 0; + is the usual  

addition and the usual multiplication of integers. Then R is a commutative ring with unit 

element. 

10.2.4. Example. Let R be the set of even integers under the usual operations of addition and 

multiplication. Then R is a commutative ring but has no unit element. 

10.2.5. Example. Let R be the set of rational numbers under the usual addition and 

multiplication of rational numbers. Then R is a commutative ring with unit element. 

10.2.6. Self Assessment questions. 

Find the multiplicative inverse of a given non-zero rational number. 

10.2.7. Definition. A ring in which the non-zero elements form a group is called a division 

ring or skew-field. 

10.3. INTEGRAL DOMAINS AND FIELDS: 

10.3.1. Definition. If R is a commutative ring, then 0  a  R is said to be a zero divisor if 

there exists b  R, b  0, such that ab = 0. 

10.3.2. Definition. A commutative ring is an integral domain if it has no zero divisors. 

10.3.3. Definition. A ring is said to be a division ring if its non-zero elements form a group 

under multiplication. 

10.3.4. Example. The ring of integers is an integral domain. 

10.3.5. Example. The ring of all real numbers with usual addition and multiplication is a 

division ring as well as field. 

10.3.6. Lemma. If R is a ring, them for all a, b R 

(i)   a 0 = 0 a = 0 

(ii)  a(–b) = (–a)(b) = –(ab) 
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(iii) (–a)(–b) = ab 

If, in addition, R has a unit element 1, then 

(iv) (–1) a = –a 

 (v) (–1)(–1) =1 

Proof. Assume that R is a ring and let a, b  R 

      (i) a 0 = a(0 + 0) = a0 + a0 

       Now, 0 + a0 = a0 = a0 + a0 

 a0 = 0 (by the right cancellation law) 

similarly, 0a  + 0 = 0a = (0+0)a = 0a+0a 

 0a  = 0 (by the left cancellation law) 

(ii) By (i) 0 = a0 

                   = a (b + (–b)) 

                   = ab + a(–b) 

 a(–b) = –(ab)  

Also 0 = 0b = (a + –a)b 

                    = ab + (–a)b 

 (–a)b = –(ab) 

Therefore, a(–b) = (–a)b = – (ab) 

(iii) (–a)(–b) = –(a(–b)) (by (ii)) 

                     = – (–(ab)) (by (ii)) 

                     = ab 

(iv) Suppose that R has a unit element ‘1’ 

consider (–1)a = –(1a)                           (by ii) 

                        = –a 

Therefore, (–1) a = –a 

(v) Consider (–1)(–1) = – ((1)(-1)) by (ii) 

                                   = –(–(1.1) by (ii) 

                                   = 1.1 =1 

((or) by (iii) (–1)(–1) = 1.1 =1. 

10.3.7. The Pigeonhole Principle 

If n objects are distributed over m places, and if n > m, then some places receives at least two 

objects. 

10.3.8. Lemma. A finite integral domain is a field. 

Proof. Let R be a finite integral domain. Then R is a commutative ring which has no zero 

divisors. 

To prove R is a field it is enough to prove that every non-zero element has multiplicative 
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inverse. Now we show. 

(i) There exists 10 such that a1= a a  R 

(ii) For every 0  aR there exists bR such that ab = 1 

 Let R = {x1, x2, …., xn} and 0 aR 

Now, we claim that x1a, x2a, …., xna are distinct elements in R 

For, xia = xja for some i  j 

 (xi–xj) a =0 

 xi –xj =0 (since R is integral domain and a  0) 

 xi = xj 

This is a contradiction to i  j 

Thus x1a, x2a, …., xna are distinct elements in R. 

Therefore R = {x1a, x2a, …., xna} 

Since a R, a = xka for some 1 k  n 

This implies a = xka = axk (  R is commutative) 

Now we show that xk is the identity element in R. 

Let rR 

Then r = xl a for some 1  l  n 

Consider  r xk = (xla)xk 

                        = xl (a xk) 

                          = xl a = r 

Therefore, r xk = xk r = r , r R 

This shows that xk is the identity element in R. Let us denote xk =1. 

Also xk= xja for some, 1 j  n       ( xkR, xk= xja for some j) 

Since R is commutative, 

 =  a=a  for some 1  j  n 

This shows that xj is the multiplicative inverse of a in R. 

Hence R is a field. 

10.3.9.Corollary. If p is a prime number then Jp, the ring of integers mod p, is a field. 

Proof. By the lemma 10.2.8 it is enough to prove that Jp is an integral domain, since it only 

has a finite number of elements. We know that Jp ={ , ,  }is a commutative ring 

with respect to addition and multiplication modulo p. 

Let      and suppose that   =  

Now   =     ab  0(mod p) 

 ab–0 is divisible by p 

 p | ab 

 p|a or p|b 

 a  0(mod p) or b  0 (mod p) 
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   = 0 or   = 0  

Therefore,     = 0  either   = 0 or   =  0 

so,  Jp in a finite integral domain  

                                                                                                                                                                                                                                                                                          Thus Jp is a field. 

10.3.10. Definition. An integral domain D is said to be of characteristic 0 if the relation ma = 

0, where a  0 is in D, and m is an integer, can hold only if m = 0. 

10.3.11. Definition. An integral domain D is said to be of finite characteristic if there exists a 

positive integer m such that ma = 0 for all a D. 

10.3.12. Definition. A ring in which x2 = x for all elements is called a Boolean ring. 

10.3.13. Examples. 

(i) (Z, +,   ) is an integral domain with characteristic 0. 

(ii) (Zp, +,  ) is an integral domain with characteristic p. 

(iii) (Z6, +,  ) is a commutative ring but not an integral domain. 

10.4 SOME PRELIMINARY RESULTS ON RINGS:  

10.4.1. Problem. If every xR satisfies x2 = x, prove that R must be commutative. 

Solution. We are given that x2 = x  x  R. So, for all x, x2=0  x=0 (since x2 = x) 

Now for all x, y R , consider (xy–xyx)2 = (xy–xyx)(xy–xyx), 

       = xyxy–xyxyx–xyx2y+xyx2yx 

       = xyxy–xyxyx–xyxy+xyxyx (since x2=x) 

       = 0 

 (xy – xyx)2 = 0 

 xy – xyx = 0 (since x2=0  x=0) 

 xy = xyx   → (1) 

       Similarly, we can see that (yx–xyx)2 = 0  

      Therefore yx–xyx = 0 

yx = xyx   → (2) 

from (1) & (2) , xyx = xy =yx    x, y  R 

i.e., xy = yx    x, y  R 

Hence R is commutative. 

10.4.2. Problem. Prove that if a,bR and n,m are integers, then (na)(mb) = (nm) (ab) 

Solution. Let R be a ring and a,bR 

consider (na)(mb) = (a + a + …..+ a) (b + b + …..+ b) 
                                                               n times                            m times 

                              =  a b  +  a b + ,…….+a b
 

                                mn times 

             = (mn) (ab) 
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10.4.3. Problem. If D is an integral domain and if na =0 for some 0  a in D and some integer n 

 0, prove that D is of finite characteristic. 

Solution. Assume that D is an integral domain without loss of generality, we may assume 

that n is a positive integer. 

We are given that na =0 for some 0  aD and nN For all 

xD we have 

(na)x = 0 

 (a + a + .........+ a)x =0 
                                                    n times 

ax + ax +….+ ax = 0 
                       n times 

a(x+ x + .......+ x) = 0 
                       n times 

 a(nx)  =  0 

 

Since D is an integral domain and  a  0  we must have nx = 0  x  D 

Then D is of finite characteristic. 

10.4.4. Problem. Show that the commutative ring D is an integral domain if and only if for a, 

b, c  D with a  0 the relation ab = ac implies that b = c. 

Solution. Suppose D is an integral domain. Let a, b, c  D with a  0  
Assume that ab = ac 

 ab – ac = 0 

 a (b – c) = 0 

 b – c =0 ( 0  a D & D is an integral domain) 

 b = c 

Conversely assume that ab = ac  b=c 

10.4.5. Self Assessment Question. If a, b, c, d R and R is a ring then evaluate (a + 

b)(c + d). 

10.4.6. Self Assessment Question. Prove that if a, b R, then (a + b)2 = a2 + ab + b2, where x2 

= xx. 

10.4.7. Self Assessment Question. Find out two examples for an integral domain  which 

are not fields. 

10.5. MODEL EXAMINATION QUESTIONS: 

10.5.1. Define a ring, commutative ring. Give two examples of each. Give an example of a 

ring which is not commutative. 

10.5.2. Prove that every field is an integral domain. 

10.5.3. If R is a ring and a,bR, then show that (–a)(–b) = ab.  

10.5.4. Prove that every finite integral domain is a field. 
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10.5.5. Show that the characteristic of an integral domain is a prime number if D is of finite 

characteristic 

10.6  SUMMARY: 

The abstract algebraic concepts. Ring, ring with unit element, commutative ring, 

integral domain, division ring, field were introduced. The set of integers and the set of 

rational numbers with usual addition and multiplication of numbers form commutative ring 

with unit element. The set of even integers under the usual operations of addition and 

multiplication forms a commutative ring without unit element. The set of integers modulo n 

(where n  +, n 2) forms a finite commutative ring. 

A finite integral domain is a field. For any prime number p, the set of integers 

modulo p forms a field. An integral domain D is of finite characteristic if there exists a 

positive integer m such that ma = 0 for all a D. If D is of finite  characteristic then the 

smallest positive integer p with pa = 0 for all a D, is called the characteristic of the 

integral domain D. This p is a prime number. 

10.7  TECHNICAL  TERMS: 

Ring with unit element.                           Let (R, +, ·) be a ring.  If 1 R such that a.1 = 1.a  =a 

                                                                       for every a R, then we say that R is a ring with   

                                                                       unit element 

   

Commutative ring. If a.b = b. a a, b   R , then R is said to be a   

                                                                         commutative ring . 

Division ring. A ring R is said to be a division ring if R-{0} is a 

                                                                   group. 

Integral Domain. A commutative ring is said to be an integral    

                                                                             domain if it has no zero divisors. 

Field. A division ring is said to be a field if it is   

                                                                   commutative. 

   

The pigeon hole If n objects are distributed over m places and if  n>m 

 principle. then some place receives at least two objects. 

Finite Characteristic. An integral domain D is said to be of finite   

                                                                  characteristic if there exists a positive integer m   

                                                                   such that  ma = 0 a  D. 

Characteristic. If D is of finite characteristic then we define the 

                                                                   characteristic of D to be the smallest positive    

                                                                  integer p such that pa = 0 for all a  D. 

10.8  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

10.2.6. Let Q be the set of all rational numbers and 0  q Q. Then q=  where a, b with 



Center for Distance Education  10.8   Acharya Nagarjuna University 

b  0. Since q  0 we have that a  0. Now  Q such that .q =   =1. Thus  is the inverse 

of the given non-zero element q =  Q 

10.4.5. Let R be a ring and let a, b, c, d R 

consider (a+b) (c+d) = a(c+d) +b (c+d) (by the distributive law) 

= ac + ad + bc + bd 

 10.4.6. Let R be a ring and a, b  R        

Consider (a + b)2  = (a + b) (a + b) 

                             = a(a + b) + b(a + b) 

                             = aa + ab + ba + bb 

                             = a2 + ab + ba + b2 

10.4.7. (i) The set of integers forms an integral domain which is not a field. 

  (ii) The set of real quaternions forms an integral domain which is not a field. 

10.9  SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 
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 LESSON -11 

HOMOMORPHISMS  – IDEALS AND QUOTIENT 

RINGS 
OBJECTIVES: 

The objectives of this lesson are to 

 Introduce the concepts like homomorphism, kernel and isomorphism. 

 Discuss some examples for homomorphism and kernel. 

 Introduce the concepts like ideal, quotient ring. 

 Discuss some examples of ideals. 

 Know how to construct a quotient ring R/I for a given ideal I 

STRUCTURE: 

 11.1. Introduction 

 11.2. Ring Homomorphism 

 11.3. Kernel of a homomorphism 

          11.4. Ideals 

 11.5. Quotient Rings 

 11.6. Model examination questions 

 11.7  Summary 

 11.8  Technical terms 

 11.9  Answers to self assessment questions 

11.10 Suggested Readings  

11.1. INTRODUCTION:  

 The notion of homomorphism is one of the central ideas that are common to all 

aspects of modern algebra. By this, one means a mapping from one algebraic system to a 

like algebraic system which preserves the structure. 

Next we define ideal of a given ring R and construct the quotient ring of R with respect 

to a given ideal in a natural way. Ideals play an important role in the study of rings. 

11.2. RING HOMOMORPHISM’S: 

11.2.1. Definition. A mapping  from the ring R into the ring R1 is said to be a 

homomorphism if 

(i) (a+b) =  (a) +  (b) 

(ii) (ab) =  (a)  (b). for all a,bR 

11.2.2. Lemma. If  is a homomorphism of R into R1, then 

(i) (0) =0 

(ii) (–a) = –   (a) for every aR 

Proof. (i) Consider  (0) =  (0+0) 

                                           =  (o) +  (0) 

 0 +  (0) =  (0) +  (0) 

 0 =  (0) 
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Therefore,  (0) = 0 

(ii) Let aR 

Consider  (a+(–a)) =  (a)+  (–a) 

  (0) =  (a)+  (–a) 

 0 =  (a) +  (–a)       (by (i)) 

  (–a) = –  (a). 

11.2.3. Note: If both R and R1 have the respective unit elements 1 and 11 for their 

multiplications it need not follow that  (1) = 11. However, if R1 is an integral domain, or if 

R1 is arbitrary but  is onto then  (1) = 11. 

11.2.4. Self assessment question: Consider Z, the ring of integers, and the ring   

  =  {m+n  / m,n  Define ) ) By ϕ (m + n ) = m - n . Show 

that ϕ is an isomorphism. 

11.3. KERNEL OF A HOMOMORPHISM:  

11.3.1. Definition. If  is a homomorphism of R into R1 then the Kernel of  , I() is the set 

of all elements a  R such that  (a) =0, the zero element of R1.  

11.3.2. Lemma. If  is a homomorphism of R into R1 with kernel I() then  

(i) I( ) is a subgroup of R under addition.  

(ii) If a  I () and r  R then both ar and ra are in I().  

Proof. Assume that  : R  R1 be a homomorphism with kernel, I( ).  

i.e, I() = {a  R /  (a) = 0,the zero element R1 }.  

Since 0  I (), I ( ) is non-empty  

clearly, I ( )  R  

(i) We have to prove that I( ) is a subgroup of R under addition.  

Let x, y I ()  

Then  (x) = 0 and  (y) =0  

Now  (a+(–b)) =  (a) + (–b)  (∵ ϕ is a homo morphism)  

  =  (a) –  (b)  (∵  (b) = – (b)) 

  (a  b) =  (a)   (b)  

                = 0 – 0  

        = 0  

 a  b  I ()  
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Therefore, I( ) is a subgroup of R under addition. 

(ii) Let a  I ( ) and r R 

consider  (ra) =  (a )  (r ) = 0          (∵ ϕ is a homomorphism) 

  (r) = 0  ar  I ( )  

Also consider  (ar ) = (r) (a)        (∵ ϕ is homomorphism)  

          =  (r)0  

                                  = 0  

 ar  I () 

Let y  I ( )  

Then  ( y ) = 0  

  ( y ) =  (0)  

 y = 0 (∵  is one  to one)  

Therefore, Kernel of , I ( ) = {0}  

Conversely, suppose that I () ={0}  

We have to prove that  is one -to- one  

Let a,bR   (a) =  (b)  

  (a)   (b) = 0  

 (a-b) = 0 (∵  is a homomorphism) 

 a  b  I ( ) = {0}  

a–b = 0  

 a = b  

Therefore,  is one  to  one  

Thus  is an isomorphism from R into R1 

11.4. IDEALS:  

11.4.1. Definition. A non empty subset U of a ring R is said to be an ideal of R of if  

(i) U is a subgroup of R under addition.  

(ii) For every uU and rR, both ur and ru are in U.  

11.4.2. Lemma. If  is a homomorphism of R into R1 with kernel I(), then I() is an ideal of 

R.  

Proof. By lemma 11.3.2, I() is an ideal of R.  

11.4.3. Problem. If U is an ideal of R and 1U, prove that U = R  

Sol. Assume that U is an ideal of R and 1U clearly U  R  

Let r R  

Since U is an ideal of R we have that r R and 1  U implies r.1U. So, r  U.  

Therefore, R  U 
Hence U = R  
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11.4.4. Problem. If F is a field, prove that its only ideals are {0} and F itself  

Sol. Suppose that F is a field  

We know that {0} and F are ideals of F  

Let U be an ideal of F such that U  {0}  

Since U  {0},  an element y U  y  0  

But F being a field and y  0, y –1 F.  

Since U is an ideal of F, yy–1 U. But yy–1 = 1U  

By 11.4.3, U = F.  

 

11.4.5. Problem. Prove that any homomorphism of a field is either an isomorphism or takes 

each element into 0.  

Sol. Let F1 , F2 be two fields and  is a homomorphism from F1 into F2 .  

If  (x) = 0 xF1 then  = 0  

Now suppose that  = 0  

Then  aF1   (a)  0  

We know that I() is an ideal of F1 .  

By 11.4.4, either I( ) = {0} or I() = F1  

If I() = F1 then  (x) = 0 xF1 so that  = 0.  

Which is a contradiction to   0.  

Therefore, I() = {0} 

By 11.3.2,  is an isomorphism.  

11.4.6. Self Assessment question. If R is a commutative ring and a R,  

 (i) Show that a R = {ar/rR} is an ideal of R.  

 (ii) Show by an example that this may be false if R is not commutative.  

11.4.7. Self assessment question. If U, V are ideal of R,  

 Let U+V = {u+v / uU, vV). Prove that U +V is also an ideal.  

11.4.8. Definition. Let R be a ring. A subset I of R is called a left ideal of R if  

(i) I is a subgroup of R under addition. 

(ii) r R, aI implies r aI.  
 

11.4.9. Definition. Let R be a Ring. A subset I of R is called a right ideal of R if  

(i) I is a subgroup of R under addition. 

(ii) r R, aI implies arI.  

11.4.10. Problem. If U,V are ideals of R let UV be the set of all elements that can be written 

as finite sums of elements of the form uv, where uU and vV. Prove that UV is ideal of R.  

Solution. Suppose that U,V are ideals of R 

UV =  /  

Let x,y UV  

Then x  and y =  for some ,  for each admissible values of 

i. 

Now, x–y =  

      =  (by the definition of UV)  
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So, x–y UV  

Therefore, UV is a subgroup of R under addition.  

Let r R  

Consider xr =  

        =  

        =  (  Vis an ideal, vi rV)  

 xr UV 

similarly, we can prove that ruUV  

Therefore, UV is an ideal of R.  

11.4.11. Self Assessment question. If U, V are ideals of a ring R, prove that UV  U  V.  

11.4.12. Problem. If R is a ring and a  R let r(a) = {x  R / ax = 0}. Prove that r(a) is a 

right ideal of R. 

Solution. Suppose that R is a ring and a  R  

Let r(a) = {x  R / ax = 0}  

Suppose x, y  r(a)  

Then ax = 0 and ay = 0  

Consider a(x – y) = ax – ay = 0–0 =0  

So, x – y  r(a)  

Thus r(a) is a subgroup of R under addition.  

Next if x  r(a) and rR, we have a(xr) = (ax)r = 0r = 0  

So, xr  r(a) for all xr(a) and r  R  

Hence r(a) is a right ideal of R. 

 

11.4.13. Problem. If R is a ring with unit element 1 and  is a homomorphism of R onto R1 . 

Prove that  (1) is the unit element of R1  

Solution. Assume that R is a ring with unit element 1 and : R R1 is an onto 

homomorphism.  

Let y R1  

Since  is onto,  xR   (x) = y.  

Now y (1) =  (x)  (1)  

       =  (x.1)   ( ∵  is homomorphism)  

       =  (x)  

       = y  

Similarly,  (1) y = y  

Hence  (1) is the unit element of R1. 

 

11.5. QUOTIENT RINGS.  

11.5.1. Lemma. If U is an ideal of the ring R, the R/U is a ring and is a homomorphic image 

of R.  

Proof. Let R be a ring and U is an ideal of R define a relation ‘~’ on R as follows.  

a ~ b iff a – bR for all a, bR  

Now we prove that ‘~’ is an equivalence relation on R.  

Since a – a = 0  R, a  R, a ~ a, aR.  
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So, the relation ‘~’ is reflexive 

suppose a ~ b, a, bR  

 a – bU  

 b – aU (∵ U is an ideal of R)  

 b ~ a  

So, the relation ‘~’ is symmetric.  

Suppose a ~ b, b ~ c, a, b, c R  

 a – bU and b – cU  

 (a – b) + (b – c)U  

 a – cU  

 a ~ c  

So, the relation ‘~’ is transitive.  

Hence the relation ‘~’ is an equivalence relation on R.  

Now, the set of all equivalence classes under the relation ‘~’ denoted by R/U is given by  

R/U = {a+U / aR}  

We define ‘+’ and ‘ • ’ on R/U as follows.  

(i) (a + U) + (b + U) = (a + b) +U  

(ii) (a + U). (b + U) = ab + U for all a, bR.  

First we show that the operations defined above are well defined.  

Suppose a + U = a1+U and b + U = b1 + U, where a, a1, b, b1  R.  

 a – a1 U and b – b1 U  

 (a – a1 ) + (b – b1 )  U  

 (a + b) – (a1 + b1 )  U  

 (a + b) + U = ( a1 + b1 ) + U  

 (a + U) + (b + U) = (a1 + U)+( b1 + U)  

So ‘+’ is well defined  

Suppose a + U = a1 + U and b + U = b1 + U, where a, a1, b, b1R  

 a – a1U and b – b1U  

 a – a1 = u1 and b– b1 = u2 for some u1, u2U    

 a = a1 + u1 and b = b1 + u2  

consider ab = (a1 + u1 ) (b
1 + u2 ) 

      = a1 (b1 + u2 ) + u1 (b
1 + u2 )  

      = a1 b1 + a1 u2 + u1b
1 + u1 u2  

Since U is an ideal of R, we have that  

a1u2 + u1b
1 + u1u2 U   (∵ a1 u2U, u1 b

1U and u1u2U)  

put u3 = a1u2 + u1b
1 + u1u2  

Then ab = a1b1 + u3  

So,  ab + U = (a1b1 + u3 ) + U  

            = a1 b1 + ( u3 + U) (u3  U, u3 + U = U)  

                       = a1 b1 + U  

i.e; (a + U)(b + U) = (a1+U)( b1+U)  

Thus ‘ • ’ is well defined.  

Now, we show that (R/U, +, • ) is a ring  

Let a + U, b + U, c + U R/U.  

(i) Consider (a + U) + [(b + U) + (c + U)] = (a + U) + [(b + c) + U]  

 = (a + (b + c)) + U  

 = ((a + b) + c)  + U  

 = [(a + b) + U] + (c + U)  
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 = [(a + U) + (b + U)] + (c + U)  

Thus ‘+’ is associative in R/U  

(ii) Now (a + U) + (b + U) = (a + b) + U  

 = (b + a) + U  

 = (b + U) + (a + U)  

This ‘+’ is commutative in R/U  

(iii) Clearly 0 + UR/U  

For any a + U  R/U, (a + U) + (0 + U) = (a + 0) + U = a + U  

So, 0 + U is the additive identity in R/U.  

(iv) Let a + UR/U  

Since a  R, –a  R  

Clearly –a + U  R/U  

Consider (a + U) + (–a + U) = (a + (–a)) + U  

 = 0 + U  

 = U 

So, –a + U is the additive inverse of a + U  

Hence (R/U, +, • ) is an abelian group.  

(v) (a + U)[(b + U)(c + U)] = (a + U)(bc + U)  

 = (a(bc) + U)  

 = ((ab)c + U)  

 = (ab + U)(c + U)  

 = [(a + U) (b + U)] (c + U)  

So, (R/U,+, • ) is associative.  

(vi) Consider (a + U)[(b + U) + (c + U)] = (a + U) [(b + c) + U]  

 = a(b + c) + U  

 = (ab + ac) +U  

 = (ab + U) + (ac + U)  

 = (a + U)(b + U) + (a + U) (c + U)  

Similarly, we can prove that  

[(a + U) + (b + U)] (c + U) = (a + U) (c + U) + (b + U)(c + U)  

So, distributive laws are satisfied in R/U  

Hence (R/U, +, • ) is a ring.  

Define  : R  R / U by  (a) = a + U  a R  

Now, we show that  is a homomorphism.  

Let a, b  R  

 (a + b) = (a + b) + U ( by the definition of  )  

= (a + U) + (b + U)  

=  (a) + (b)  (ab)  

= (a + b) + U  

= (a + U) + (b + U)  

=  (a) +(b)  

Therefore, is a homomorphism from R1 into R/U  

Now, we prove that  is onto  

Let x + U R/U where x  R  

By the definition,  ( x) = x + U 

i.e; for any x + U R/U,  x  R  ( x) = x + U  
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So,  is onto  

Thus R/U is the homomorphic image of R.  

11.5.2. Definition. The ring (R/U, +, • ) is called the quotient ring of the ring R by the given 

ideal U.  

11.5.3. Note. If R is a commutative ring so is R/U  

For any a + U, b + U  R/U  

(a + U) (b + U) = ab + U  

                        = ba + U  

                        = (b + U) (a + U)  

So, R/U is commutative  

11.5.4. Result. If : RR/U then the kernel of , I() = U.  

Proof. Suppose  : R  R/U is an onto homomorphism.  

Let x  I()  

Now x  I()   (x) = 0 in R/U  

           x+U = 0+U  

           x  U  

Then I() = U  

 

11.5.5. Theorem. Let R, R1 be rings  is a homomorphism of R onto R1 with kernel U. Then 

R1 is isomorphic to R/U. Moreover there is a one-to-one correspondence between the set of 

ideals of R1 and the set of ideals of R which contain U. This correspondence can be achieved 

by associating with an ideal W1 in R1 the ideal W in R defined by W = {x  R/(x) = W1}. 

With W so defined, R/W is isomorphic to R1/W1 .  

 

Proof. Suppose that : R R1 be an onto homomorphism with kernel U.  

Then  (R) = { (x) /x  R} = R1 and I()=U  

(i) We have to prove that R1 is isomorphic to R/U  

Define  : R/U R1 by  (a + U) =  (a),  a  R  

Let a, b  R.  

 is well defined and one - to - one. 

now a + U = b + U a – b  U  

        (a - b) = 0  (⸪ I( ) = U)  

        (a) =(b)  

        (a + U) = (b + U)  

So,  is well defined and one- to- one  

 is onto.  

Let r1 R1  

Since  is onto,  r  R   (r) = r1  

clearly, r + U R/U and by the definition of , (r +U) =  (r) = r1  

 is homomorphism.  

Consider  [(a + U) + (b + U)] =  [(a + b) + U)]  

 =  (a + b)  

 =  (a) + (b)  

 = (a + U) + (b + U)  

also  [(a + U)(b + U)] = (ab + U)  

 =  (ab)  
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 =  (a) (b)  

 = (a + U) (b + U)  

So,  is a homomorphism.  

Hence R/U is isomorphic to R1  

(ii) Let A = { J/J is an ideal of R containing R1}  

and B = {W1 / W1 is an ideal of R1}  

Define f : A B as follows.  

Let J A  

We have to prove that (J) is an ideal of R1.  

Let a1, b1  (J)  

Then a1 =  (a) and b1 =  (b) for some a, b  J  

Now, a1 – b1 =  (a) –  (b)  

         =  (a – b)  (⸪  is homomorphism) 

Since J is an ideal of R and a, b J  

 (a – b)  (J) and hence a1 – b1  (J)  

Let r1  R1  

Since  is onto,  r  R (r) = r1.  

Now a1 r1 = (a) (r)  

                = (ar)   (J)   (⸪  is homo and J is an ideal of R)  

So, a1r1   (J)  

similarly, r1a1  (J)  

Thus (J) is an ideal of R1 and hence (J) B  

Now, we show the one- to -one correspondence between A and B.  

Define f(J) =  (J)  

f is one - to - one.  

Suppose f(J1 ) = f(J2 ) where J1, J2  A  

  (J1) =  (J2 )  

We have to prove that J1 = J2 

Let x J1  

  (x)   (J1) =  (J2)  

  (x) =  (y) for some y  J2  

  (x–y) =0 in R1  

 x –y  I()= U  J2  

 x–y  J2  

Since y  J2 and x–y  J2 and J2 is an ideal of R, (x–y) +y J2  

Clearly x = x – y +y J2  

 x  J2  

So, J1  J2. Similarly, we can prove that J2  J1  

Hence J1 = J2  

Then f is one - to - one  

f is onto.  

Let W1 B 

Define W = ϕ-1W1  

    = {x  R/(x)  W1}  

Now we claim that W is an ideal of R  

Let a, b W  

Then (a), (b)  W1  
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  (a – b ) =  (a) –  (b)  W1  (⸪W1 is an ideal)  

 a – b  W  

Let r R  

Consider  (ar) =  (a)  (r)  W1  (⸪  (a) W1,  (r) R1 and W1 is an ideal)  

ar W  

Similarly, we can prove that ra  W  

Hence W is an ideal of R  

Also, note that U = I()   –1(W1) =W  

So, U  W  

i.e, for each W1  B, WA  f(W) = (W) = W1  

Thus f is onto  

Hence there is a one - to - one correspondence between the set of ideals of R1 and the set of 

ideals of R which contain U.  

(iii) Finally, we have to prove that R/W is isomorphic to R1 / W1  

Consider the natural onto homomorphism : R1 R1 / W1 defined by (r1) = r1+ W1 for all r1 

 R1  

Put h =  . By the composition of mappings, h is a mapping from R into R1 .  

Since  and  are onto and homomorphism, h =  is also an onto homomorphism. Let 

xR  

Now, x  ker h  h(x) = 0  

   (  ) (x) = 0  

    ( (x)) = 0  

    (x) + W1 = 0 + W1  

    (x)  W1 

   xW  

This shows that ker h=W  

By the fundamental theorem of homomorphism  

R/ker h  R1 /W1  

i.e R/W R1 /W1  
 

11.6. MODEL EXAMINATION QUESTIONS.  

11.6.1.  If : R  R1 is ring homomorphism, then show that ker is a subgroup of (R, +).  

11.6.2.  If : R  R1 is ring homomorphism with ker  = 0   is a one-to-one mapping.  

11.6.3.  The homomorphism  of R into R1 is an isomorphism iff I() = {0}  

11.6.4.  If U is an ideal of the ring R, then R/U is a ring and is a homomorphic image of R. 

11.6.5.  If F is a field, prove that its only ideals are (0) and F itself.  

11.6.6.  If R is a ring and aR. Let r(a)={xR/ax =0}. Prove that r(a) is a right ideal of R.  

 

11.7 SUMMARY:  

* A mapping  from a ring R into a ring R1 is said to be a ring homomorphism if it satisfies 

(i)  (a+b) =  (a) + (b) and (ii)(ab) =  (a) (b), for all a,bR.  

* If : RR1 is a homomorphism then (0)=0 and  (–a) = – (a), for all a R.  

* The set {xR/ (x) = 0} is called the kernel of  and is denoted by I( ) or ker  .  

* A mapping : R R1 is one- to-one  ker  ={0}.  

* A non empty set U of a ring R is said to be an ideal of R if  

(i) U is subgroup of R under addition  

(ii) arU and raU for any aU and rR.  
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* If : R R1 is homomorphism then ker  is an ideal of R.  

* If U is an ideal of R then R/U = {r+U/rR} is a ring called the quotient ring. Also R/U is a 

homomorphic image of R.  
 

11.8 TECHNICAL TERMS:  

 Homomorphism  

 Kernel  

 Isomorphism  

 Left ideal  

 Right ideal  

 Ideal  

11.9 ANSWERS TO SELF ASSESSMENT QUESTION:  

11.2.4. Let 𝑚 + 𝑛 , 𝑝 + 𝑞  ∈ 𝐽  )  

(𝜙(𝑚 + 𝑛 ) + (𝑝 + 𝑞 )) = 𝜙 ((𝑚 + 𝑝) + (𝑛 + 𝑞) ) 

        = (𝑚 + 𝑝) − (𝑛 + 𝑞)  

        = 𝑚 + 𝑝 − 𝑛  − 𝑞  

        = (𝑚 − 𝑛 ) + (𝑝 − 𝑞 )  

        = 𝜙(𝑚 + 𝑛 ) + 𝜙(𝑝 + 𝑞 )  

So, (𝑥 + 𝑦) = 𝜙(𝑥) + 𝜙(𝑦) for all x, y ∈ 𝐽( )  

𝜙 ((𝑚 + 𝑛 )(𝑝 + 𝑞 )) = 𝜙(𝑚𝑝 + 𝑚𝑞  + 𝑛𝑝  + 𝑛𝑞 )  

    = (𝑚𝑝 + 2𝑛𝑞 + (𝑚𝑞 + 𝑛𝑝)   

    = (𝑚𝑝 + 2𝑛𝑞) − (𝑚𝑞 + 𝑛𝑝)   

Consider 𝜙 ((𝑚 + 𝑛 )(𝑝 + 𝑞 )) = (𝑚𝑝 + 2𝑛𝑞) − (𝑚𝑞 + 𝑛𝑝)  

        = (𝑚 − 𝑛 )(𝑝 − 𝑞 ) 

        = 𝜙 ((𝑚 + 𝑛 )(𝑝 + 𝑞 ))  

This proves that 𝜙 is a homomorphism  

Suppose (𝑚 + 𝑛 ) = 0  

𝑚 − 𝑛   

 m = 0 and n = 0  

 m+ n  =0  

So,  is one - to - one mapping  

For 𝑚 + 𝑛  ∈ ( ), the element 𝑚 − 𝑛  ∈ 𝐽( ) ∋ 𝜙(𝑚 + 𝑛 ) = 𝑚 – 𝑛   

So  is onto.  

Hence  is an isomorphism.  

 

11.4.6. a) First we will show that aR is a sub group of R.  

Suppose x, y aR . Then x = ar1 and y = ar2 for some r1, r2  R 

But x – y = ar1 – a r2 = a(r1 – r2 ) = ar3 for some r3R.  

So, x – y aR.  

Thus aR is a subgroup of R under addition.  

Next if some xaR and rR, Then we have x = ar4 for some r4R.  

Also rx = xr (⸪ R is a commutative ring) 

   = (ar4)r 

   = a(r4r)  
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 = ar5 for some r5  R.  

So, for all xaR and rR we have rx, xraR  

Thus aR is an ideal of R.  

 

(b) Consider R =   

Then R is a ring but not commutative.  

Since   =  

And    =   

So, R is not a commutative ring.  

Let a =   

Then aR =   =  

         =  where 𝛼 = 𝑎 + 𝑐  𝑅 𝑎𝑛𝑑 𝛽 = 𝑏 + 𝑑  𝑅  

But aR is not a two sided ideal  

For,  ∈ 𝑎𝑅 𝑎𝑛𝑑 ∈ 𝑅  

We have  =  ∉ 𝑅 

 
There is a non-commutative ring R, aR need not be an ideal  

11.4.7. Let x, y  U + V  

Then x = u + v and y = w + z for some u, wU and v, z V  

now, x – y = (u + v) – (w + z) 

        = (u – w) + (v – z)  U+V  

 U + V is subgroup of (R, +)  

(Since: U is an ideal, u – wU and since V is an ideal, v – z V)  

Let rR and x  U+V  

Consider xr = (u + v)r  

        = ur + vr U + V  

 U + V is a right ideal of R  

Similarly, we can prove that U + V is a left ideal of R.  

 

11.4.11. Let xϵUV  

Then x =  for some positive integer n,  ∈ 𝑉 𝑎𝑛𝑑  ∈ 𝑉 for all 1 ≤ 𝑖 ≤ 𝑛.  

Since ui U, vi V  R and U is a right ideal of R, we have that uivi U for all 1  i  n .  

Since U is a subgroup of (R,+), we have . So, x  U  

Similarly, we can prove that xV  

Hence xUV  

 UV UV  
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LESSON -12 

MORE IDEALS AND QUOTIENT RINGS 
 

OBJECTIVES: 

The objectives of this lesson are to 

 Define a maximal ideal of a ring R. 

 Give some examples of maximal ideals in some concrete rings. 

 Get a necessary and sufficient condition for R/M to be a field. 

STRUCTURE: 

12.1    Introduction 

12.2    Maximal ideals 

12.3    Model examination questions 

12.4    Summary 

12.5   Technical Terms 

12.6   Answers to self assessment Questions 

12.7   Suggested Readings  

12.1 INTRODUCTION: 

We continue the discussion of ideals and quotient rings of the previous lesson. We 

have seen that some properties of a ring R are carried over to the quotient ring R/M, for 

instance the commutative property and the existence of unit element. Also there are some 

properties which are valid in a ring but not valid in the quotient ring. For example, Z is an 

integral domain but Z4=Z42is not an integral domain. 

In this lesson, we will prove when a commutative ring with unit element will become 

a field. Also we will prove the necessary and sufficient condition for R/M to be a field, where 

M is an ideal of R. 

12.2  MAXIMAL IDEAL: 

12.2.1 Definition.  An ideal M R in a ring R is said to be a maximal ideal of R if 

whenever U is an ideal of R such that M U R, then either R=U or M=U. 

 12.2.2. Lemma. Let R be a commutative ring with unit element whose only ideals are (0) 

and R itself. Then R is a field. 

Proof. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. 

To prove R is a field, it is enough to show that every non-zero element has a multiplicative 

inverse in R. 

Let 0 a R. 

Consider the set Ra={xa /x  R} 

Now we claim that Ra is an ideal of R 

Let u, v Ra, then u = r1a, v = r2 a for some r1,r2 R.  

So, u + v = r1a + r2a 

               = (r1+r2) a Ra  
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Similarly, –u = –r1a = (–r1)a Ra 

Hence Ra is an additive subgroup of R  

Moreover if r R, ru=r(r1a)=(rr1)a  Ra 

Thus Ra is an ideal of R 

Since R has the only ideals (0) and R itself either Ra = (0) or Ra = R  

As 0  a =1.a Ra, Ra  (0) 

So, Ra=R. 

Then there exists an element b R such that ab = 1  

This shows that b is the inverse of a in R 

Hence R is a field. 

 12.2.3. Problem. Let R be the ring of all the real valued, continuous functions on the closed 

unit interval [0,1]. Let M = {f(x) R/ f( ) =0 }. Then M is a maximal ideal of R. 

Sol.  First we prove that M is an ideal of R.  

Let f(x), g(x) M  

Then f( ) = g( ) =0 ( by the definition of M) 

Clearly, f( ) - g( ) = 0-0=0 

f(x) –g(x) M                       (⸪ f(x) M  f( ) =0) 

So, M is an additive subgroup of R.  

Let f(x) R, g(x) M 

Then g( )=0 

Now f( ) g( ) = f( ) 0 =0 

and g( ) f( )= 0 f( )=0 

Thus f (x) g(x)  M…….(1) 

         . 

Now we prove that M is a maximal ideal of R. Suppose there is an ideal U of R such that 

M U and M U 

Then there is a function g(x) U and g(x)M 

So that g( ) =a  0 

Write f(x) =g(x) – a ………(2) 

Then  f( ) = g( ) –a  

           = a-a =0 

So, f(x)  M U 

f(x) U 

Now f(x) U and g(x)  U implies that g(x)–f(x) U(  U is an ideal of R)  

But a = g(x) –f(x) U (by 2) 

Since R is the ring of all the real-valued, continuous functions on [0,1] and 

a 0, there is a function l(x) R such that l(x) = 1/a for all x  [0,1]. 

Since U is an ideal, 1=a.1/a = g(x) l(x) U. 

That is 1 U. So, U=R 

          . 
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12.2.4. Problem. Let Z be the ring of integers with respect to usual addition and 

multiplication of numbers and let M be an ideal of Z. Then M is a maximal ideal of Z if and 

only if M = (n) = p Z for some prime number p. 

Sol. We know that for any n Z, (n) = nZ is an ideal of Z in of this form….(1) 

Let M be an ideal of Z. Suppose that M is a maximal ideal of Z 

By (1), M = p Z for some positive integer p Z. 

Now, we show that p is a prime number. If possible assume that p is not a prime number. 

Then p = ab with1< a < p and 1< b < p.  

Write U = aZ 

Then U is an ideal of Z.  

Claim: M U 

Let n M= pZ 

n = px for some x Z 

Now, n = px = (ab)x = a(bx) aZ=U. 

n U 

Then M U 

Since M is a maximal ideal of Z and M U Z, we have either U = M or U= Z. 

If U=Z, then aZ = Z. So, a =1.Which is a contradiction. 

Suppose U = M 

Since U = aZ, a =a.1 a Z = U  

clearly     a  M = pZ 

yb=1 

y=1or b =1 

b=1 or a=p 

Which is a contradiction. 

p is a prime number 

Conversely, suppose that p is a prime number. We will show that M = pZ is a maximal ideal 

of Z. 

Suppose that N is an ideal of Z such that M U Z and M N. 

Claim. M=Z  

By (1), N= NZ for some positive integer n. 

Now p pZ=M N=NZ 

p=nm for some integer m 

 ............................................ p/m or p/n……..(2) 

If p/n then n=ps for s Z 

n pZ=M 

N M 

N =M           ( M  N) 

Which is a contradiction to M N,  

So, p n 

From (2), p/m 

 m=pr for some r Z  

w, p = nm = n (pr)= (np)r = (pn)r = p(nr) 

1= nr nZ = N 

1  N 

N = Z 
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Hence M = pZ is a maximal ideal of Z. 

 12.2.5. Self Assessment Question. 

A commutative ring with identity is a field iff (0) is a maximal ideal. 

 12.2.6. Theorem. If R is a commutative ring with unit element and M is an ideal of R, 

   then M is a maximal ideal of R if and only if R/M is a field. 

Proof. Assume that R is a commutative ring with unit element and M is an ideal of R. 

Suppose that R/M is a field. Since R/M is a field, it’s only ideals are (0) =M/M  and R/M 

itself. 

That is there is no ideal I/M of R/M such that M/M I/M R/M……(1) 

By the known theorem, there is a one-to-one correspondence between the set of ideals 

of R/M and the set ideals of R which contain M. 

            Under this correspondence, the ideal M of R corresponds to the ideal (0), R/M where 

as the ideal R of R corresponds to the ideal R/M of R/M…..(2). 

From (1) & (2), there no ideal I of R such that M I R.  

Hence M is a maximal ideal of R. 

Conversely suppose that M is a maximal ideal of R. 

As R is a commutative ring with unit element, R/M is also a commutative ring with 

unit element. Since M is maximal ideal of R, we have that the only ideals of R which 

contain M are M and R itself. That is there exists no ideal I of R. Such that M I R 

  So, by the same correspondence, there is no ideal I/M of R/M such that M/M  I/M R/M. 

Thus the only ideals of R/M are (0) = M/M and R/M itself.  

By the known lemma, R/M is a field. 

12.2.7. Problem: Let R be a ring with unit element, R not necessarily commutative, such that 

the only right ideals of R are (0) and R. Prove that R is a division ring 

Solution: Let R be a ring with unit element. To prove R is a division ring it is enough to prove 

that every non-zero element of R has a multiplicative inverse in R. 

Let 0 a R 

Clearly, aR ={ax/x R} 

Now, we prove that a R is a right ideal of R  

Let u,v aR 

Then u = ar1and v=ar2 for some r1,r2 R  

Now, u–v = ar1– ar2 

        = a(r1–r2) R 

Let s R 

Consider us = (ar1)s 

                 = a(r1s) aR 

 a R is a right ideal of R 

But, the only right ideals of R are (0) and R itself.  

So, either ar = (0) or aR=R  

Since 0  aϵR, aR  (0)        ( 0 a a.1 aR) 
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aR=R…….(1) 

Since1 R, there exists bϵR such that 1=ab  

Clearly b 0 

Now bR is a non-zero right ideal of R 

Then bR = R 

1= bc for c R 

consider a = a.1 

              = a(bc) 

               = (ab)c 

              = 1.c 

              = c 

 ab =1= ba 

This shows that b is the inverse of a in R 

Thus every non-zero element of R has a multiplicative inverse in R  

Hence R is a division ring. 

12.2.8. Problem: Let J be the ring of integers, p a prime number, and (p) the ideal of J 

consisting of all multiples of p. Prove 

(i) J/(p) is isomorphic to Jp, the ring of integers mod p. 

(ii) Jp is a field. 

Solution: Clearly, Jp = { } 

(i) Define : J→Jp by  (n)=   for every n J, 

Where  is the equivalence class containing n under the relation modulo p.  

Now, we prove that is an onto homomorphism.  

For any n1, n2  J 

(n1+n2)    =   

          =   

        =  (n1) +  (n2)   and 

 (n1n2)  =  

    = .  

    =  (n1)  (n2) 

 is a ring homomorphism 

Let Jp   then m is an integer and 0 mp–1 

Now m J and (m) =  

  is onto 

By the known theorem, we have 

J / ker Jp …..(1) 

Claim: kerϕ = (p) = pZ  

Let x J  
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 Now x ker    (x) = 0  

   

x– 0 is divisible by p 

x=py for some y Z 

x pZ 

 ker pZ 

Let r  pZ r = pu for some u Z 

r – 0 is divisible by p 

r 0(mod p) 

  (r)=  

  =  

 r ker  

 pZ ker  

Hence ker  = pZ………..(2) 

From (1) & (2) J/(p) Jp 

(ii) Since p is a prime number, we have that (p) is a maximal ideal of J  

            By the known theorem, J/(p) is a field 

  As J/(p) Jp, Jp is a field. 

12.3. MODEL EXAMINATION QUESTIONS: 

12.3.1. Define the term maximal ideal. If F is a field, then prove that () is the maximal     

ideal of F. 

12.3.2. Let R be a commutative ring with unit element whose only ideals are (0) and R 

itself. Then prove that R is a field. 

12.3.3. If R is a commutative ring with unit element and M is an ideal of R, then M is a 

maximal ideal of R if and only if R/M is a field. 

12.3.4. Let R be a ring with unit element, R is not necessarily commutative, such that the 

only right ideals of R are () and R. Prove that R is a division ring. 

12.4  SUMMARY: 

The Concept of maximal ideal of a ring is introduced. Some maximal ideals in some 

concrete rings were given. We proved that a commutative ring R with unit element whose only 

ideals are (0) and R itself then R is a field. Also we proved that an ideal M of a commutative 

ring with unit element is maximal if and only if R/M is a field 

12.5  TECHNICAL TERMS: 

Maximal ideal Definition. 12.2.1 

12.6  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

12.2.4. Let R be a commutative ring with identity. 

By 12.2.6,M is a maximal ideal of R iff  R/M in a field 

Taking M=(0), we get that (0) is a maximal ideal of R iff  R/(0) is a field. But, R/(0) = R. 

So, R is field. 
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12.7  SUGGESTED READINGS: 
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                Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 
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LESSON -13 

THE FIELD OF QUOTIENT’S OF 

AN INTEGRAL DOMAIN 

OBJECTIVES: 

The Objectives of this lesson are to 

 Define imbedding of a ring in another ring. 

 Define field of quotients of an integral domain 

 Define equivalence relation and equivalence classes 

 Prove a theorem namely, Every integral domain can be imbedded in a field. 

 

STRUCTURE: 

13.1. Introduction 

13.2. Imbeddings 

13.3. Model examination questions 

 13.4 Summary 

 13.5 Technical terms 

 13.6 Answers to self assessment questions. 

 13.7 Suggested Readings  

13.1. INTRODUCTION: 

In this lesson we start with the integers Z and then build the rationals by taking all 

quotients of integers (avoiding division by zero). We start with an integral domain and build 

a field which contains all quotients of elements of the integral domain. So, we are extending 

an integral domain to a field. 

 13.2. IMBEDDINGS: 

13.2.1. Definition: A ring R can be imbedded in a ring R1 if there is an isomorphism of  R into 

R1. If  R and R1 have unit elements 1 and 11 respectively, we insist that this isomorphism takes 

1 into 11. 

 13.2.2. Definition: A ring R1 will be called an over ring or extension of R if R can be            

imbedded in R1. 

 13.2.3. Theorem: Every integral domain can be imbedded in a field. 

Proof: Let D be an integral domain 

Let M = {(a,b)/a,bD and b  0}  

Here think of (a, b) as a/b 

In M define a relation ~ as follows. 

(a,b) ~ (c,d) if and only if ad = bc……..(1) 

We claim that this defines an equivalence relation on M. 

(i) Let (a,b)M 
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            Then a, b  D    ( by this definition of M) 

Since D is an integral domain  

we have that ab = ba 

so, by (1) (a,b) ~ (a,b) 

 The relation ‘~’ is reflexive. 

(ii) Let (a,b), (c,d) M and (a,b) ~ (c,d)  

Then by (1), we have ad = bc 

   bc = ad 

 cb = da 

 (c, d) ~ (a,b) 

 the relation ‘~’ is symmetric 

(iii) Let (a,b), (c,d), (e,f)M and  

  (a,b) ~ (c,d) and (c,d) ~ (e,f) 

 ad = bc and cf = de 

 adf = bcf and bcf = bde 

 adf = bde 

afd = bed    (by commutative law) 

 af = be    (by the cancellation law) 

(a,b) ~ (e,f) 

 the relation ‘~’ is transitive 

Hence the relation ‘~’ is an equivalence relation. 

For any (a,b)M, let us denote the equivalence class containing (a,b) as  

[a ,b]  write F = {[a,b]/(a,b) M} 

We define the addition and multiplication on F as follows;   

For any [a,b], [c,d]F, [a,b]+[c,d] = [ad + bc, bd] 

and [a,b].[c,d] = [ac, bd] 

Now, we prove that the operations additions and multiplication are well defined. 

 Suppose [a,b] = [a1,b1] and [c,d]=[c1,d1] 

 (a,b)~(a1,b1) and (c,d)~(c1,d1) 

 ab1 =ba1 and cd1 =dc1 .......................................(2) 

Claim: [a,b] + [c,d] = [a1,b1]+[c1,d1] 

i.e., [ad+bc,bd] = [a1d1+b1c1, b1d1]  

i.e., (ad+bc, bd) ~ (a1d1+b1c1,b1d1) 

  i.e., (ad+bc)b1d1 = bd(a1d1+b1c1) 

Consider (ad+bc)b1d1 = adb1d1+bcb1d1 

 = ab1dd1+bcd1b1 

 = ba1dd1 +bdc1b1      (by (2)) 
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 = bda1d1+ bdb1c1 

 = bd (a1d1+b1c1) 

addition is well defined on F 

Claim: [a,b].[c,d] = [a1,b1].[c1,d1] 

i.e [ac, bd] = [a1c1,b1d1] 

i.e (ac, bd) ~ (a1c1,b1d1) 

i.e ac b1d1= bda1c1 

Consider acb1d1= ab1cd1 

                          = ab1dc1 (by (2) 

                          = bda1c1 

multiplication is well defined on f  

Claim: addition is associative 

let [a,b],[c,d], [e,f] F 

Consider ([a,b] + [c,d]) +[e,f] 

= [ad + bc, bd] + [e,f] 

= [(ad)f + (bc)f + (bd)e, (bd)f] 

= [a(df) +  b(cf)+b(de), (bd) f] 

= [a(df)+b(cf +de), b(df)] 

= [a,b]+[cf+de,df] 

= [a.b]+([c,d]+[e,f])  

Claim: addition is commutative 

Let [a,b],[c,d]F 

Consider [a,b]+[c,d] = [ad+bc,bd] 

= [bc+ad,db] 

= [cb+da, db] 

                    = [c,d]+[a,b]  

Claim: Existence of zero element. 

For any 0  xD, [0,x]F and [a,b]F  

Consider [a,b] +[0,x] = [ax+b,bx] 

           = [ ax, bx] 

           = [a,b]   (  (a, b) ~ (ax, bx)) 

[0,x] is the additive identity 

Claim: Existence of additive inverse. 

        For any [a,b]F, [–a,b]F ( –aD) 

Consider [a,b] + [–a,b] = [ab + b(–a), bb] 

 = [ab – ab, b2] 

 = [0, b2] 
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 = [0,y] (b2=y) 

 [–a, b] is the additive inverse of [a,b]  

Claim: multiplication is associative 

For any [a,b],[c,d],[e,f] F  

Consider ([a,b][c,d][e,f]) = [ac,bd][e,f] 

     = [(ac)e, (bd)f)] 

              = [a(ce), b(df)] 

                         = [ab],[(ce,df)] 

     = [a,b] ([c,d].[e,f])  

Claim: multiplication is commutative 

For any [a,b] ,[c,d] F  

Consider [a,b].[c,d] = [ac,bd] 

        = [ca,db] 

        = [c,d].[a,b] 

Claim: Existence of multiplicative identity. 

For any 0  dD, [d,d] acts as a multiplicative identity. Let [a,b]F 

Consider [a,b][d,d] = [ad,bd] 

       = [ a,b] 

Claim: Existence of multiplicative inverse 

Let [a,b] be a non zero element in F.  

So, a  0 and b  0. Clearly [b,a]F 

Consider [a,b].[b,a] = [ab, ba] 

                       = [ab, ab] 

                                 = [d,d]    (where d = ab) 

Then [b,a] is the multiplicative inverse of [a,b] 

Claim: Multiplication is distributive over addition  

For any [a,b],[c,d],[e,f] F 

Consider [a,b].([c,d]+[e,f]) 

= [a,b].[cf+de,df] 

                        = [a(cf+de),b(df)]  

= [a(cf) + a(de), b(df)] 

=[(a(cf) + a(ed)b,b(df)b] 

= [((ac)f+(ae)d)b,bd(fb)] 

= [(ac)fb+(ae)db,bd(bf)] 

= [(ac)bf+bd(ae), bd(bf)] 

= [ac, bd]+[ae, bf] 

= [a,b].[c,d] + [a,b]. [e,f] 
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 Similarly, we can prove that 

([a,b]+[c,d]).[e.f] = [a,b].[e,f]+[c,d].[e,f] 

Hence (F,+, • ) is a field 

i.e, F is a commutative division ring 

Fix 0  xD 

Define : D F by  (a) = [ax, x] 

 Clearly,  is well - defined  a  D 

Claim :  is one-to one 

Suppose a,b D such that  (a)  =  (b) 

Now,  (a) =  (b)   [ax,x]=[bx,x] 

 (ax,x)~(bx,x) 

 ax2=xbx=bxx 

ax2 = bx2 

 a = b (by cancellation laws ) 

 is one-to-one  

Claim:  is a homomorphism  

Let a,bD 

Consider  (a+b) = [(a+b)x,x] 

                = [ax+bx,x] 

                             = [(ax+bx)x,xx] 

                             = [axx+bxx,xx] 

                             = [axx+xbx,xx] 

                             = [ax,x]+[bx,x] 

                             = (a)+(b) and  

                 (ab)   = [(ab)x,x] 
     = [(ab)xx,xx] 

     = [a(bx)x,xx] 

     = [a(xb)x,xx] 

     = [(a x)bx,xx] 

     = [ax,x].[bx,x] 

     = (a)+(b) 

 is a homomorphism 

Hence  : D  F, defined by  (a) =[ax, x] a D .  

Where 0 xD be a fixed   element, is an isomorphism of D into F. 

Thus D can be imbedded in F. 
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13.2.4. Note. The field constructed in the above theorem is called the field of quotients   of D. 

We may verify that if D = Z then F = Q. 

13.2.5. Self Assessment Question. 

Prove that the mapping : D F defined by (a) =[a,1] is an isomorphism of 

D into F. 

13.2.6. Self Assessment Question. 

Let R be an integral domain and F is the field of quotients of R. Then prove that F is 

the smallest field containing R. 

13.3. MODEL EXAMINATION QUESTIONS: 

13.3.1. Define the term imbedding. Show that every integral domain can be imbedded in a 

field. 

13.3.2. Prove that the mapping : D F defined by  (a) = [a,1] is an isomorphism of D into 

F 

13.4  SUMMARY: 

We learn that the ring of integers can be enlarged to the set of rational numbers which 

is a field. After defining imbedding, we have proved that every integral domain can be 

imbedded in a field. The field F constructed is called the field of quotients of the integral 

domain D. 

13.5  TECHNICAL TERMS: 

Imbedded. A ring R is said to be imbedded in a ring R1 if there exists an isomorphism  : R 

 R
1. Moreover, if R and R1 are rings with unit elements 1 and 11 respectively. We insist that 

 (1) = 11 

13.6  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

13.2.5. First we prove that  is well defined  

Let a,b D such that a = b 

Then a.1.1 = b.1.1  ( 1D) 

 a.1.1 = 1.b.1 

 (a.1,1) ~ (b.1,1) 

 [a.1,1]=[b.1,1] 

[a,1] = [b,1] 

a) = (b) 

 is well defined  

Also  (a+b) = [a+b,1] 
                = [a.1+1.b, 1.1] 

                    = [a,1] + [b,1] 

                    =  (a) + (b)      
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and         (a,b)         = [ab,1] 
        = [ab,1.1] 

        = [a,1].[b,1] 

        = (a). (b) 

is a ring homomorphism  

now we prove that  is one- to- one 

Suppose  (a)=(b) 

 [a,1] = [b,1] 

 (a,1) ~ (b,1) 

 a.1 = 1.b 

 a = b 

 is one - to -one 

Hence  is an one - to - one isomorphism 

13.2.6. Let R be an integral domain and F be the field of quotients of R. Let F1 be any field 

containing R. Then for any xF, x = ab–1; a,bR; b  0 . 

Since R  F1, a, bF1 and since F1 is a field, it follows that x =ab–1F1. Thus F  F1. This 

shows that F is the smallest field containing R. 

(Let R be an integral domain and F is the field of quotients of R. Then every 

element x F can be expressed as x = ab –1 for some elements a,bR with b 0) 

13.7  SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 
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LESSON -14 

EUCLIDEAN RINGS 

OBJECTIVES: 

The objectives of this lesson are to 

 Define Euclidean ring, principal ideal ring, division ring, greatest common divisor, unit, 

associates, prime element and relatively prime elements. 

 Prove some basic lemmas and theorems on the concepts defined. 

 Deduce that a Euclidean ring is a principal ideal ring. 

 Understand the difference between a unit and a unit element. 

 Prove the unique factorization theorem for Euclidean rings. 

 Determine all maximal ideals in an Euclidean ring. 

 Defining the domain of Gaussian integers J[i]. 

 Study the ring of Gaussian integers, a particular Euclidean ring 

 Prove Fermat’s theorem. 

STRUCTURE: 

14.1. Introduction 

14.2. Euclidean rings 

14.3. Principal ideal rings 

14.4. Prime elements 

14.5. A particular Euclidean ring. 

14.6. Model examination questions 

14.7 Summary 

14.8 Technical Terms 

14.9  Answers to Self Assessment Questions. 

14.10 Suggested Readings  

 14.1. INTRODUCTIONS: 

We now formulate the concepts like divisibility, factorization, prime elements, 

greatest common divisor etc for a general commutative ring. In this lesson, we study some 

types of rings which possess the property similar to the property of division algorithm in the 

ring Z of integers. We prove that any ideal A in an Euclidean ring R is of the form A = (a). 

Where (a) = {xaxR}. We also prove the unique factorization theorem. We give a simple, 

precise answer to the question, what conditions improved on an ideal A = (a) to ensure 

that A is a maximal ideal of R? In the last part of this lesson, we are about to particularize 

the notion of Euclidean ring to a concrete ring. The ring of Gaussian integers. We  define the set 

of Gaussian integers and observed that the set of Gaussian integers forms an Euclidean ring. 

Finally, we prove the Fermat’s theorem. 

14.2. EUCLIDEAN RINGS: 

14.2.1. Definition. An integral domain R is said to be Euclidean ring if for every a  0 in         

R there is defined a non-negative integer d(a) such that 

(i) For all a,bR, both nonzero, d(a) d(ab) 

(ii) For any a,bR, both non zero, there exist t,rR such that a = tb + r where  either r =  
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0 or d(r) < d(b) 

14.2.2. Example: The ring Z of integers is a Euclidean ring. Define d(a) = |a| for aZ–{0} 

14.2.3. Theorem. Let R be a Euclidean ring and let A be an ideal of R. Then there an element 

aoA such that A consists exactly of all ax as x rangers over R. 

Proof. If A = {0}, then  a0 = 0 and hence A = 0R= aR 

Thus we may assume that A {0}. Hence there is an element a  0 in A. 

Consider the set {d(x)/0  xA} which is a nonempty set of non-negative integers. 

Choose an element a0A such that d (a) is minimum 

i.e., d(a) = min {d(x)/0 xA} 

Since A is an ideal of R and aA we have that aR = { ax/xR} A……..(1) 

Claim: AaR 

Let bA. Clearly a  0 and b 0 

Since R is an Euclidean ring there exists t, r R such that b = t a+r where r = 0 or d(r) < d(a0) 

Since aA and A is an ideal of R, t aA also since bA and taA and A is an ideal we 

have b–taA. But r =b–taA. If r  0 then d(r) < d(a), which is a contradiction to the 

minimal of d(a). Consequently r = 0 and hence b = ta= at. 

So, b{ ax/xR} 

 A {ax/xR}………(2) 

from (1) and (2) we have  

 A = { ax/xR} = aR 

14.2.4. Remark : 

(i)  In a commutative ring R with unit 1 for any a R, we know that aR = Ra is an ideal. 

(ii) If A is an ideal of R such that aA. Then aR A. 

Therefore Ra = aR is the smallest ideal of R containing a and is denoted by (a) 

14.2.5. Definition: An integral domain R with unit element is a principal ideal ring if  every 

ideal A in R is of the form A = (a) for some a R. 

14.2.6. Corollary. A Euclidean ring possesses a unit element.  

 Proof. Let R be a Euclidean ring. 

Since R is an ideal of R itself by 14.2.3 we may conclude that R = (u0) = u0R for some u0 

R. 

Thus every element in R is a multiple of u0. In Particular, u0 = u0c for some cR.  

If aR then a = xu0 for some xR 

Now consider ac  = (xu0)c 

          = x(u0c) 

            = xu0 

= a 

This is true for any xR. Since R is commutative ac = a = ca for all aR 
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 Hence c is the unit element in R 

Thus R possesses a unit element. 

14.3. PRINCIPLE IDEAL RINGS: 

14.3.1. Definition. An integral domain R with unit element is a principal ideal ring if   every 

ideal A in R is of the form A = (a) for some aR. 

The smallest ideal containing a is denoted by (a) and is called the ideal generated by ‘a’. 

14.3.2. Corollary. Every Euclidean ring is a principal ideal ring. 

Proof. Let R be a Euclidean ring by 14.2.6, R contains a unit element. Also 

14.2.3, every ideal A of R is of the form A = aR for some aR.  

Finally, by 14.2.4, if follows that A = aR = (a) 

This shows that R is a principal ideal ring. 

14.3.3. Definition. If a  0 and b are in a commutative ring R then a is said to divide b if 

there exists cR such that b = ac. We shall denote a divides b by a/b & a does not divide b 

by a b. 

14.3.4. Remark. Let R be a commutative ring and let a,b,cR. Then the following facts can 
be verified easily. 

(i) If a | b and b | c then a | c 

(ii) If a | b and a | c then a | (b  c) 

(iii) If a | b and a | bx for all xR 

14.3.5. Definition. If a,b R then dR is said to be a greatest common divisor of a and  b if 

(i) d/a and d/b 

(ii) whenever c | a and c | b then c | d 

The g c d of a and b is denoted by (a, b) = d 

14.3.6. Lemma. Let R be a Euclidean ring. Then any two elements a and b in R have a greatest 

common divisor d. Moreover d = a + b for some  R. 

Proof. Let R be a Euclidean ring. By 14.2.6, R has a unit element. 

Let a,bR 

Write A = {ra +sb/r,sR} 

We claim that A is an ideal of R  

For this, take x,yA. 

Therefore x = r1a + s1b, y = r2a + s2b for some r1, r2, s1, s2 R 

Then x  y = (r1r2) a + (s1  s2)b A 

For any uR, ux = u(r1a+s1b) 

     = (ur1)a+(us1)bA 

 Since R is commutative , xuA 
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Thus A is an ideal of R. 

by 14.2.3, there exists an element dA such that A = dR = (d) 

By the construction of A, d = a + b for some R 

Also a = 1.a + 0.bA and 

b = 0.a + 1.b A 

So, a = da1 and b = da2 for some a1,a2 R 

 d | a and d | b 

i.e., d is a common divisor a and b  

Let cR such that c | a and c | b 

By 14.3.4 (iii), c | a and c | b 

Again by 14.3.4(ii), c|( a + b ) But 

a + b = d. Therefore c | d 

Thus d is a greatest common divisor of a and b and d = a + b for some R 

14.3.7. Definition. Let R be a commutative ring with unit element. An element aR is a 

unit in R if there exists an element bR such that ab = 1. 

14.3.8. Note. Do not confuse a unit with a unit element! A unit in a ring is an element whose 

inverse is also in the ring. 

14.3.9. Lemma. Let R be an integral domain with unit element and suppose that for       a,bR 

both a | b and b | a are true. Then a = ub, where u is a unit in R. 

Proof. Let R be an integral domain with unit element and suppose that for a,bR both a | b 

and  b | a are true. 

Since a | b , b = xa for some xR and since b | a, a = yb for some yR  

Then b = xa 

= x(yb) 

= (xy)b 

 b = (xy)b 

 1.b = (xy)b 

 1= (xy)  (by cancellation laws)  

 xy = 1 

  yx =1( R us a commutative ring) 

By the definition, y is a unit in R.  

Hence a = yb where y is a unit in R 

If we take u = y then a = ub where u is a unit in R. 

14.3.10. Definition. Let R be a commutative ring with unit element. Two    elements and   b in R 

are said to be associates if b = ua for some unit u in R. 

14.3.11. Problem. In a commutative ring with unit element prove that the relation a is an 

associative of b is an equivalence relation. 

Solution. Let R be a commutative ring with unit element.  
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For a,bR, define a~b iff a is an associate of  b. 

That is a~b  b = ua for some unit uR.  

Since a = 1.a and 1 is a unit element, a is an associate of a itself.  

That is a ~ a. Therefore the relation ‘~’ is reflexive 

Suppose a~b. So, b = ua for some unit u in R  

Since u is a unit, there exists wR such that wu =1 

 Now wb = w(ua) = (wu)a = 1.a =a 

 wb = a and w is a unit  

 a = wb and w is a unit 

 b ~ a 

Therefore the relation ‘~’is symmetric 

suppose a~b and b~c 

 b=ua and c= wb for some units u, w in R since u and w are units, there exists 

v,zR such that uv=1 and wz =1. 

As (uw) (zv) = u(wz)v = u.1.v=uv=1, uw is also a unit. 

Now c =wb=w(ua) =(wu)a = (uw)a and uw is a unit. That c=(uw)a, uw is a unit in R.  

This implies a~c. 

Therefore the relation ‘~’ is transitive. 

Thus the relation ‘~’ is an equivalence relation. 

14.3.12. Problem. In a Euclidean ring prove that any two greatest common divisors of  a and 

b are associates. 

Solution. Let d1, d2 be two greatest common divisors of a and b. Since d1 is  common 

divisor of a and b and d2 is a g.c.d of a and b by 14.3.5, d1|d2. 

Similarly, since d2 is a common divisor of a and b and d1 is a g.c.d of a and b by 

14.3.5 d2|d1. 

Since d1|d2 and d2|d1, 14.3.9, we have d1=ud2 for some unit u in R. Thus 

d1, d2 are associates. 

14.3.13. Lemma. Let R be a Euclidean ring and a 0, bR. If b 0 is not a unit in R, then 
d(a) < d (ab). 

Proof. Let R be a Euclidean ring and let a,bR where a  0. 

Assume that b  0 is not a unit in R. Since aR, A = (a) = {xa/xR} in an ideal of R. For any 

yA we have y = xa for some xR.  

Since R is a Euclidean ring by 14.2.1, we have d(a)  d(xa) for all 0  xR. 

That is d(a)  d(y) for all 0  yA. 

This shows that d(a) = min {d(y)/0  yA}………(1) 

As aA and bR, abA and hence d(a)  d(ab)  

If possible assume that d(a) = d(ab) ………(2) 

From (1) and (2) we have 

d(ab) = d(a) = min{ d(y)/0 yA} 

Since abA and A is an ideal of R it follows that (ab)R A. Now we prove that A  (ab)R 

Let 0  xA 
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Since R is an Euclidean ring, for x and ab, there exists t, r  R  x = (ab)t +r  

where r = 0 or d(r) < d(ab)…..….(3) 

Now r = x –(ab)tA 

It r 0 then from (3), d(r) < d(ab) which is a contradiction to our assumption d(a) = d(ab). 

Therefore r =0 

x–(ab)t = 0 

 x = (ab)t (ab) R Therefore A (ab)R 

Hence A = (ab) R 

 Now 0  aA = (ab) R 

 a = (ab)y for some yR 

a – (ab)y = 0 

a(1–by) =0 

 1–by = 0   ( a  0 and R is an integral domain)  

by =1 

 b is a unit 

Which is a contradiction to the fact that b is not a unit. 

d(a) < d(ab) 

14.3.14. Self Assessment Question. 

Prove that a necessary and sufficient condition that the element a in the Euclidean ring be a 

unit is that d(a) = d(1). 

14.4. PRIME ELEMENTS: 

14.4.1. Definition. In the Euclidean ring R a non unit is said to be a prime element   of R if 

whenever  = ab, where a,b are in R then one of a or b is a unit in R. 

A prime element is an element in R which cannot be factored in R in a non-trivial way. 

14.4.2. Lemma. Let R be a Euclidean ring. Then every element in R is either a unit in R or can 

be written as the product of a finite number of prime elements of R. 

Proof. Let R be a Euclidean ring and let aR. Here the proof is by induction on d(a). Since 

d(1)  d(1.x) = d(x) 

 for all 0  xR, we have d(1) = min{d(x)/0 xR} 

 If d(a) =d(1) then by 14.3.14, we get that a is a unit. 

Assume that the result is true for all xR such that d(x) <d(a). 

 If a is a prime element then there is nothing to prove. 

So, suppose that a is not a prime element. 

Then a = bc, where neither b nor c is a unit in R. 

By 14.3.13, d(b) < d(bc) = d(a) and also d(c) < d(bc) = d(a) 

Thus by over induction hypothesis, we get that b = 1  2….. n 
and 

c=   …….   where 1i m and , 1i m are prime elements of R.  
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Now a=bc = (1  2…………. n)(   …….  )  

     a = 1 2………….. n   …….    

Hence  the lemma. 

14.4.3. Definition: In the Euclidean ring R, a and b are said to be relatively prime if        

their greatest common divisor is a unit of R. 

14.4.4. Lemma. Let R be a Euclidean ring. Suppose that for a,b,c R, a |bc but (a,b) =1. 

Then a|c. 

Proof. Let R be a Euclidean ring 

Suppose that a,b,cR such that a |bc and (a,b) =1. By 14.3.6, the g.c.d 1 can be written as 

1 = a + b for some R 

c.1 = c ( a + b ) 

 c = ca + cb 

Since a | bc, a | c b also since a | c a   we have a | (cb + ca) 

That is a | c. 

14.4.5. Lemma. If  is a prime element in the Euclidean ring R and  /ab where a,bR then 

 divides at least one of a or b. 

Proof. Let R be a Euclidean ring. Assume that  is a prime element in R such that  /ab 

where a,bR 

Suppose that   a 

we now show that  /b  

write d = ( ,a) where dR 

Then d| and d/a…….(1) 

Since d/ and  is a prime element, either d=  or d is a unit 

 If d =  then by (1),  /R 

Which is a contradiction to our supposition. In the other case, we have that (, a) =1 

 Since , a) =1 and  /ab by 14.4.4, /b. 

14.4.6. Corollary. If  is a prime element in the Euclidean ring R and  | a1, a2,...,an then 

divides at least one a1,a2,……,an. 

Proof. Let R be a Euclidean ring and let  be a prime element in R such that 

 | a1,a2,...,an  where a1,a2,.…anR. 

We will prove this by using induction on n. If n =1 then  | a1  

Suppose the result is true for n–1 

That is  |a1,a2,…….an–1  

Given  |a1,a2……an–1an 

If  /bn then the proof is over  

suppose  bn. 

By 14.4.5, we conclude that |a1, a2 ..................................an–1. 

Now by induction hypothesis, if follows that  /ai  for some i. 
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14.4.7. Theorem. (Unique Factorization Theorem). Let R be a Euclidean ring and 

a0 a non-unit in R. Suppose that a= 1 2…………n =   ..….  where the and 

are prime elements of R. Then n = m and each i, 1 i  n is an associate of some , 1  j 

m and conversely each is an associate of some q. 

Proof. Let R be a Euclidean ring and a  0 be a non-unit in R. 

Given that a= 1  2…………. n =   ….  where the s and  are prime elements of 

R……(1) 

Since 1|a, 1|   ...  ( a=   ….  By 14.4.6, 1 | 1  j m 

Without loss of generality, we may assume j =1 

Then 1|    u11 for some u1R. Since  is prime, either u1 is a unit or 1 is a unit. 

As 1 is a prime element, u1 is a unit. 
This shows that  is an associate   

From (1),1  2…………..n = u1  ….   

                1  2…………..n=  u1  ….  

 2………….. n= u1  ….     (by cancellation laws )……..(2) 

Since  2| 2………….. n,  2| u1  ….     (by (2)) 

Again 14.4.6, 2|  for some 2 j m 

Without loss of generality, we may assume that j =2 

Then 2|   u2  some unit u2in R 

From (2), we have 

2………….. n= u1u2  ….  

 2………….. n=  u1u2 ….    (by cancellation law) 

        3…………..n= u1u2 ….         (by cancellation law) 

By repeating the above argument upto n steps, the left hand side becomes 1 and the right hand 

side becomes u1u2......un ….  

Therefore n m ( ’s are non-units) 

Similarly, we can prove then m n                 

Thus n = m 

In the above process we proved that each , 1  i n is an associate of some  1 j  m 

and each  1  km is an associate of , 1 q  n. 

14.4.8. Result. Every non-zero element in a Euclidean ring R can be uniquely written (up to 

association) as a product of prime elements or is a unit in R. 

Proof. Write the proofs 14.4.2 and 14.4.7 

14.4.9. Lemma. The ideal A =(a0) is a maximal ideal of the Euclidean ring R if and only if a0 is 

a prime element of R. 

Proof. Let R be a Euclidean ring 

Assume that A = (a0) is a maximal ideal of R. We have to prove that a0 is a prime element of R 

If possible, suppose that a0 is not a prime element of  R. Then a0= bc for some non unit b and c 

of  R. 
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Write B = (b). Then B is an ideal of R.  

Now  ao = bc  (b)  B. 

 aoB 

 A = (ao ) B 

Therefore B is an ideal of R and A B R.  

Now we claim that B A and B R . 

If possible suppose that  A = B 

Then b  B = A = (a0) 

 b= x a0 for some xR 

 b= xbc for some xR 

 b= bxc for some xR 

1= xc for some xR 

 ‘c’ is a unit in R 

This is a contradiction to the fact that c is not a unit. 

A  B 

Again, if possible suppose that B = R 

1B =(b) 

1= yb for some yR 

 b is a unit in R 

This is contradiction to the fact that b is not a unit 

B R 

Thus we get an ideal B of R such that A B R . This is a contradiction to A is a maximal 

ideal of R. 

Thus a0 is a prime element of R. 

Conversely, Assume that a0 is a prime element of R.  

We have to prove that A = (a0) is a maximal ideal of R.  

Let U be an ideal of r such that A U R. 

Since R is a Euclidean ring there exists uU such that U = (u) 

Clearly a0A U = (u) 

 a0= tu for some tR 

Since a0 is a prime element of R either t is a unit or u is a unit in R.  

If u is a unit in R then Ru = R and hence U = Ru =R. That is u = R  

If t is a unit in R then a0= tu implies u= t–1 a0 (a0) = A . That is uA. 

Now U = (u)  A and hence U = A . 

Thus A is a maximal ideal of R. 

14.4.10. Self Assessment Question. 

Prove that if an ideal U of a ring R contains a unit of R, Then U = R 

14.5. A PARTICULAR EUCLIDEAN RING: 

14.5.1. Note. (i) Let J[i] denote the set of all complex numbers of the form a+bi where  a and b 

are integers. Under the usual addition and multiplication of complex numbers J[i] forms an 

integral domain called the domain of Gaussian integers. 

(ii)  For 0  xJ[i], d(x) is a non negative integer. i.e if x = a+ ib where a,b Z, d(x) = a2+b2 

1. 
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(iii) For any two non zero Gaussian integers, x= a1+ib1and x2= a2+ib2 we have           

d(xy) = d[(a1+ib1 )(a2+ib2)] 

                =  d[(a1a2–b1b2)+i(a1b2+b1a2)] 

    = (a1a2 – b1b2)2 + (a1b2 + b1a2)2 

    = (a1a2)2 + (b1b2)2 – 2 a1a2b1b2 + (a1b2 )
2+( b1a2)2 +(a1b2 + 2 a1a2b1b2 

                 = a1
2a2

2+ b1
2b2

2+ a1
2b2

2 + b1
2 a2

2 

                 = (a1
2+ b1

2 )(a2
2+ b2

2) 

     = d(x)d(y) 

Therefore d(xy) = d(x) d(y) for any two Gaussian integers. 

(iv) Let x,y J[i] such that x 0, y 0. Then by (ii), we get that d(x)  1 and d(y)  1                

Also d(x) = d(x).1 d(x) d(y) = d(xy) 

 d(x)  d(x,y) 

(v) Let u,vJ[i] there exist t,rJ[i] such that v = tu+r. 

Where r = 0 or d(r) < d(u),|r|  n/2 

14.5.2. Theorem. J[i] is a Euclidean ring. 

Proof. We know that J[i] is an integral domain with unity with respect to the usual 

addition and multiplication of complex numbers. 

For each 0 xJ[i] where x = a+ib, define d(x) = a2+b2 and clearly d(x)  1. 

Also by 14.5.1 (ii), for any 0 x, 0 y in J[i], d(x) d(xy) 

Let x,yJ[i] such that x0 

Case(i). Suppose that y = a+ib is an arbitrary element in J[i] and x = n = n+i0 where n is a 

positive integer. 

By the division algorithm for the ring of integers we can find integers u, v such 

that a = un +u1 and b= vn+v1 where u1 and v1 are integers satisfying |u1|  n/2 

and |v1|  n/2. Let t=u+iv and r=u1+iv1 

then y = a+ib = (un+u1)+i(vn+v1) = n(u+iv) + (u1+iv1) = nt + r = tx +r   ( x = n) 

If r 0 then d(r)   = d(u1+iv1) 

     = u1
2 + v2

2  

     < (n/2)2 + (n/2)2 

     = 2 (n2/4) 

     = (n/2)2<n2 

     = d(n+i0 )   

     = d(x) 

Thus there exists two elements, t,r  J[i] such that y = tx + r where either r = 0 or                                                                                                                                                                                                                      

d(r) < d(x) 

Case (ii). Let 0  x and yJ[i] 

Write m = x  . 
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Clearly m is a positive integer and   is the complex conjugates of x. 

Observe that y J[i] ( yJ[i],  J[i] and J[i] is an integral domain) 

by case (i) ,  to,roJ[i] such that y  = tom+ro where either r0=0 or d(ro)<d(m). 

If ro=0 then y   = tom  = tox   and so y = tox  (by the cancellation laws) 

So, y = t0 x +0 = t0x+r0. 

Suppose d(r0) < d(m).  

Then we have y  = tom + ro 

y    tom = r0 

 d(y   –t0m) = d(ro) < d(m) = d(x  )

 d( y   –t0x  ) < d(x  )

 d(y-tox) d( ) < d(x) d(  ) 

 d((y–tox)( )) < d(x)d(  ) 

 d(y–tox) < 

d(x) Let r1 = y – tox 

Then y = tox+r1 and d(r1) < d(x)  

Hence J[i] is an Euclidean ring. 

14.5.3. Lemma. Let p be a prime integer and suppose that for some integer c relatively prime 

to p we find integers x and y, such that x2+y2=cp. Then p can be written as  the sum of squares 

of two integers, that is there exist integers a and b such that p= a2+b2. 

Proof. The ring of integers Z is a sub ring of J[i]. 

Part (i) In this part, we show that p is not a prime element of J[i].  

If possible, suppose that p is a prime element of J[i]. 

Since cp = x2+y2 = (x+iy) (x–iy), 14.4.5, p | (x+iy) or p | (x–iy) in J[i].  

p|(x+iy) then (x+iy) = p(u +iw) 

so, x = pu and y = pw 

since p | pu and p | pw, p |(pu–ipw)  p|(x-iy)   

Therefore p2 | (x+iy) (x–iy) 

 p
2 | (x2+y2) 

 p2 | cp 

 P | c 

Which is a contradiction to p and c are relatively prime. 

In a similar way, if p| (x–iy) then we will get a contradiction Thus p is 

not a prime element in J[i] 

Part(ii) . Since p is not a prime element in J[i], 

we have that p = (a+ib) (g +id) for some non units a+ib, g+id J[i] 

Since a+ib , g +id are non units, by 14.5.1 (ii), we have a2+b2 > 1 and g2+d2 >1.  

Since p = (a+ib) (g+id) is an integer it follows easily that p = (a–ib)(g–id)  

Thus p2 = p.p = (a+ib) (g+id) (a–ib) (g–id) 

= (a2+b2)(g2+d2) 

 (a
2+b2) | p2 

 a
2+b2 = 1 or p or p2   (  p is prime) 
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we know that a2+b2  1 

If  a2+b2 = p2 = (a2+b2)(g2+d2)  then g2+d2=1 

Which is a contradiction.  

Hence a2+b2 = p 

Hence  the lemma. 

14.5.4. Lemma. If  p is a prime number of  the form 4n+1, then we can solve the congruence 

x2 1 mod p. 

Proof. Assume that p is a prime number of the 4n+1 

 i.e., p = 4n+1 

p –1 = 4n 

 n………(1) 

Let x=1.2.3……..   

Then x = (2n)! (By (1)), which is a product of an even number of terms  

Therefore we can write of terms 

x= (-1)(-2)(-3) ……. (-  ) 

Also we know that for any integers k, 

            (p–k)  (–k) mod p 

       – k  (p–k) mod p 

For  k =1, –1 (p–1) mod p 

For  k = 2, –2  (p–2) mod p and so on 

Consider  x2 = x . x 

= (1.2.3…….  ) ((-1)(-2)(-3) ……. (-  )) 

= (1.2.3…….  )( (p-1)(p-2)(p-3) ……. (  ) 

= (1.2.3…….  )( (p-1)(p-2)(p-3) ……. (  ) 

= (1.2.3…….  )((  ) …….)(p-2)( p-1)) 

= (p –1)! 

x2  –1 mod p 

(by willson’s theorem , if p is a prime number the (p–1)!  –1 mod p) 

14.5.5. Lemma (Fermat). If p is a prime number of the form 4n+1, then p = a2+b2 

for    some integers a, b. 

Proof. First we show that there exists an integer x with 0< x p–1 such that                                                     

x2  –1(mod p) 

By 14.5.4, there exists y such that y 2 –1(mod p)…..(1) 

By the division algorithm for y, p there exists two integers a and x such that y = ap+x 

where x = 0 or 0<x  p–1. 

If x = 0 then y = ap+0 0(mod p ) and so 0 y2–1(mod p) 0  –1(mod p).  
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That is 1 is divisible by p. Which is a contradiction to p is prime. So, x 0. 

Therefore the inequality 0 < x < p holds 

consider y2= (ap+x)2=a2p2+x2+2apx 

 y2–x2 = a2p2+2apx 

      = p(a2p+2ax) 

y2–x2 is divisible by p 

 .....................................................................  y
2  x2 (mod p)……..(2) 

from (1) and (2),  

we get x2  y2 –1(mod p) 

Therefore there exists 0 < x  p–1 such that x2–1(mod p)……(3) 

Part(ii): Now we will find a number such that 

|s| <
 

and s2  –1(mod p) 

If |x| < 
 

then s = x will do 

Otherwise x > p/2x <  (p/2) 

Write s = p x 

now s= p x < p p/2) = (p/2) 

Consider s2 = (p–x)(p–x) = p2–2px+x2 

 s
2–x2 = p(p–2x) 

 p | s2–x2 

 ....................................................  s
2 x2 mod p…….(4) 

Thus there exists an integer‘s’ such that |s| < p / 2  and s21(mod p) 

Part (iii). We have s2 – 1(mod p) 

 s
2+1 is divisible by p 

s
2+1 =tp for some integer t 

Consider tp = s2+1 pp2+4/4 < p2 

tp < p2 t < p 
Since p is prime and t < p, we have that t and p are relatively prime  

by 14.5.3, p = a2 + b2 for some integers a & b 

14.5.6. Problem. Find all the units of J[i] 

Solution. Since J[i] is a Euclidean ring, an element u is a unit of j[i] if and only if d(u) = 

d(1) 

Let u = a+ ib 

Then u is a unit iff d(u) = a2+b2 = d(1) = 12+02  

 i.e, a2 + b2 = 1 

But the integral solutions of a2+b2 = 1 are a = 0, b = 1 and a=  1, b =0  

Thus i, –i, 1, –1 are the only units J[i]. 

14.5.7. Self Assessment question. If a+ib is not a unit of J[i], prove a2+b2 >1 

14.6. MODEL EXAMINATION QUESTIONS: 

14.6.1. Prove that a Euclidean ring possess a unit element. 
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0 

14.6.2. State and prove unique factorization theorem. 

14.6.3. Prove that J[i] is a Euclidean ring. 

14.6.4. If p is a prime number of the form 4n+1 then p = a2+b2 for some integers a, b 

14.7  SUMMARY: 

The abstract algebraic concepts like Euclidean ring, principal ideal ring, division, 

g.c.d, unit, associate, prime element, relatively, prime were introduced. We have established 

that a Euclidean ring has a unit element. Every Euclidean ring is a principle ideal ring. The 

relation of being associates is an equivalence relation. In an Euclidean ring any two greatest 

common divisors of two given elements are associates. We proved the unique factorization 

theorem. Every non- zero element in an Euclidean ring R is either unit in R or it can be 

uniquely written (upto associates) as a product of prime elements. An ideal A = (a0) of a 

Eulidean ring R is a maximal ideal of R a is a prime element of R. 

Later, we have defined the domain of Gaussian integers J[i]. We have proved that J[i] is 

Euclidean ring. The odd prime numbers can be divided into two classes. And those which have 

a remainder of 3 on division by 4. We showed that every prime number of the first kind can 

be written as the sum of two squares. 

14.8  TECHNICAL TERMS: 

Euclidean ring Definition. An integral domain R is said to be a Euclidean ring if for every a 

 0 in R there is defined a non-negative integer d(a) such that 

(i) For all a,bR, both nonzero, d(a)  d(ab) 

(ii) For any a,b R, both non zero, there exist t,rR such that a = tb = r where either r = 

0 or d(a) < d(b). 

Principal ideal ring Definition. An integral domain R with unit element is a principal ideal 

ring if every ideal A in R is of the form A = (a) for some aR. 

Greatest common divisor Definition. If a,b R then dR is said to be a greatest 
common divisor of a and b if 

(i) d/a and d/b (ii) whenever c | a and c | b then c | d     

The g c d of a and b is denoted by (a,b) = d 

Unit. Let R be a commutative ring with unit element. An element aR is a unit in R if there 

exists an element bR such that ab = 1. 

Relatively Prime Definition; In the Euclidean ring R, a and b are said to be  relatively 

prime if their greatest common divisor is a unit of R.  

14.9  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

14.3.14. If a is a unit then there exists bR. Such that ab = 1 

Now d(a)  d(ab) = d(1) 

Also d(1)  d(1.a) = da 

Hence d(a) = d(1) 

Conversely, suppose d(a) = d(1) 

If a is not a unit then by 14.3.13, we have that d(1) < d(1.a) = d(a), which is 
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contradiction. 

Hence a is a unit. 

14.5.7. Since a +ib  0 we have that a  0 or b  0  

If a 0 then a2+b2  a2  1 

If b  0 then a2+b2 b2 1  

Therefore in any case, a2+b2  1 

If a2+b2 = 1 then a + ib is a unit, which is a contradiction  

Hence a2+b2>1 

14.10  SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 

 

Dr.T.Srinivasa Rao 

 

 



LESSON - 15 

POLYNOMIAL RINGS 
 

OBJECTIVES 

The objectives of this lesson are to 

 Define polynomials, equality, addition, multiplication, degree, irreducibility of 

polynomials and the ring of polynomial  over a field  

 Prove  is an integral domain. 

 Understand and prove the division algorithm for polynomials. 

 Apply the division algorithm to solve some problems and further theorems. 

 Prove  is a principal ideal ring. 

STRUCTURE 

15.1. Introduction 

15.2. Polynomial rings 

15.3. Irreducible Polynomials 

15.4. Model examination questions 

15.5  Summary 

15.6 Technical Terms 

15.7 Answers to Self Assessment Questions 

15.8 Suggested Readings 

15.1. INTRODUCTION 

  Consider expressions of the type 
2 4 3x x  or 4 3 21 1 1

.
4 2 8

x x x    These are called 

polynomial expressions. The first expression 
2 4 3x x   is called as a polynomial with 

integer coefficients and the second expression 4 3 21 1 1

4 2 8
x x x    is called as a polynomial 

with rational coefficients. We are familiar with their properties like factorization, nature of 

roots etc. In this lesson, we shall consider the set  of all polynomial expressions with 

coefficients from a given commutative ring R with unit element. We shall define addition and 

multiplication on  forms a ring with respect to these operations. This ring will be a 

Euclidean ring when  is a field. So we can apply the results already obtained for Euclidean 

rings to this ring  when R is a field. We state and prove the division algorithm in   

15.2. POLYNOMIAL RINGS: 

15.2.1. Definition: Let  be a field, the ring of polynomials in the indeterminate  denoted 

by  and is defined as the set of all symbols , where 

 can be any non-negative integer and the coefficients  are all elements of 

, i.e., 

{  𝑛 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 

 

Every element of  is a polynomial with coefficients from  or polynomial over . 

15.2.2. Definition: Let  be a field and  be an indeterminate. If , then 

, for some  is non-negative integer, 
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 and , for some n is non-

negative integer, . 

(i)  are said to be equal if their corresponding coefficients are equal. 

 iff  for all . 

(ii) Addition of two polynomials  and  in  is defined as  

 
 for all . Here + is commutative. 

(iii)Multiplication of two polynomials  and  in  is defined as 

 
  

Clearly  is a semi group with identity  

15.2.3. Example: Consider the polynomials  in 

 Calculate  and  

Solution: Given  in F[x]. 

Now  

                              

                               

Now compare  and  with  and 

 respectively.  

So we have  

 

Now  

          

          

          

         

 

          
      

          

               

 . 

   

         

We define , then  is the additive identity or zero element of   

i.e,  

          

x] 

Consider a polynomial  in 

. 

Now  Then  is the additive inverse 

polynomial of  in  
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 Hence   is an abelian group. 

 By a routine verification, we can understand that the distributive laws hold good. 

Therefore  is a ring. This ring is called the ring of polynomials in the 

indeterminate  over the given field . 

15.2.4. Self Assessment Question: Consider the ring  two 

polynomials  and 

 over . Calculate  and  

15.2.5. Definition: If a polynomial  in  

with  then we say that the degree of  is n written as  is . 

i.e., the degree of  is the largest integer for which the  coefficient of  is not  

We do not define the degree of the zero polynomial. 

A polynomial is said to be constant if its degree is zero. 

15.2.6. Definition: A polynomial  is said to be 

monic if  

15.2.7. Lemma: If  are two non-zero elements of  then 

 

Proof: Let  are two non-zero elements of . 

Then  for some  is a 

non-negative integer with  and  for 

some  is a non-negative integer with . 

Therefore  and  

By definition , 

where  

Now  

Since  and  we have .  

     

               

 

15.2.8. Corollary: If  are two non-zero elements in  then 

 

Proof: By the above lemma, we have  

Then  

 

15.2.9. Corollary:  is an integral domain. 

Proof: Clearly  is a commutative ring. 

Claim:  is an integral domain, i.e. it has no non zero divisors.  

Consider the polynomials  for some 

 is a non-negative integer with  and 
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 for some  is a non-

negative integer with . 

has no non zero divisors. 

 is an integral domain. 

15.2.10. Definition: Let  with . We say that  divides   if 

there exists  such that   divides   written as 

 

15.2.11. Note: Let  be a field. By the above corollary, it follows that  is an integral 

domain. The field  of quotients of  is called the field of rational functions in  over  

15.2.12. Lemma: (The division algorithm) Given two polynomials  and  in 

, then there exist polynomials  and  in  such that  

where  or . 

Proof: Let  with  and 

 with  Then  and 

. 

If , there is nothing to prove. 

Suppose  

Let  

Then 

 

 
Then by induction on the degree of , we can assume that 

  where  

  

  

  

Here  

15.2.13. Theorem:  is a Euclidean ring 

Proof: By the corollary 15.2.9, we have that  is an integral domain. 

Let  with   

Take  

(i) Clearly,  for all non-zero polynomial  in  

(ii)  for all non-zero polynomial  in  

(iii) Let  with  

Then by the division algorithm, there exists two polynomials  and  in  such that 

 where  or . 
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 is an Euclidean ring. 

15.2.14. Lemma:  is a principal ideal ring. 

Proof: We have that every Euclidean ring is a principal ideal ring.  

Hence  is a principal ideal ring. 

15.2.15. Definition: Consider any two polynomials  and  in  not both zero. We 

say that the non zero polynomial  is the greatest common divisor of  and 

 if  

(i)  and  

(ii) If  and   then  

15.2.16. Lemma: Given two polynomials  in  they have a greatest common 

divisor  which can be realized as  

Proof: We have  is an Euclidean ring.  

Let  be an Euclidean ring. Then any two elements  have a greatest common divisor 

 Moreover the  is of the form  for some  

 Hence the  of  is of the form  for some 

  

15.3. IRREDUCIBLE POLYNOMIALS: 

15.3.1. Definition: A polynomial  in   is said to be irreducible over  if whenever 

 with  then one of  or  has degree  (i.e. it is  

constant). 

15.3.2. Example: Consider  (Here ) 

Then  or  is a root of  

 or  or  

This can not be true for any real numbers . 

 is irreducible over  

In the set C of complex numbers, consider .  

Then  and  

Therefore  is not an irreducible polynomial over C. 

15.3.3. Lemma: Any polynomial in  can be written in a unique manner as a product of 

irreducible polynomials in .  

Proof: Let  

Suppose  is a unit polynomial.  

Then  is an irreducible polynomial. 

Hence  can be written in a unique manner as a product of irreducible polynomials in 

.  

Suppose  is not unit polynomial.  

By unique factorization theorem,  can be written as a product of prime elements in a 

unique way. 

Since every prime element is an irreducible element. We have that  can be 

written as product of irreducible elements in a unique manner.  
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15.3.4. Lemma: The ideal  in  is a maximal ideal if and only if  is 

irreducible over .  

Proof: Assume that  is a maximal ideal of   

Now we prove that  is irreducible over F 

Suppose that  is not irreducible over F.  

 where  and  and . 

Take  

Clearly, we have that   

If  then  

 for some   

 
 which is a contradiction 

 
Clearly, every constant polynomial of   is not in  

 which is a contradiction 

 is irreducible polynomial over F. 

Conversely, assume that  is irreducible polynomial over  

We prove that  is maximal. 

Let  be any ideal of  with  

Then  

 for some  

Since  is irreducible, we get that  or  

Suppose  

i.e.  is a constant polynomial of . 

Then  

 ( Since u is an identity of  ) 

 
Hence  

Therefore  is maximal.  

Suppose  

Now  

, where take  

 

 

 
                                                            

 
Hence  is a maximal ideal of  

15.3.5. Self Assessment Question: (i) If  is an irreducible element in , then show 

that  is either a unit or a prime element in the Euclidean domain . 

(ii). Observe that every prime element is an irreducible element. 
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15.4. MODEL EXAMINATION QUESTIONS: 

15.4.1. Given two polynomials  and  in  where  is a field. Then prove 

that there exist two polynomials  and  in  such that  

where  or  

15.4.2. Suppose that  is a field and  Then the ideal generated by  that is, 

 in  is a maximal ideal of  is irreducible in  

 

15.5 SUMMARY: 

The abstract algebraic concepts and operations like polynomials, equality of 

polynomials, multiplication, degree, irreducibility and the ring of polynomials are introduced. 

We proved that  the ring of polynomials over a field , is an integral domain. We 

deduced the division algorithm.  is a Euclidean ring.  is also a principal ideal 

domain ring. The ideal  in  is a maximal ideal if and only if  is 

irreducible over F. 

15.6 TECHNICAL TERMS: 

Polynomial: Let F be a field, x an intermediate. Write 

 0 1[ ] | is a positiveinteger, ,1 .n

n iF x a a x a x n a F i n        Each element of  is 

called polynomial with coefficients from F. 

Constant polynomial: A polynomial with zero degree is called a constant polynomial. 

Division Algorithm: Given two polynomials  and  in  there exist two 

polynomials  and  in  such that  where  or 

 

Irreducible polynomial: A polynomial  is irreducible if  is of positive 

degree and given any polynomial  in  then either or  is relatively 

prime to  

15.7 ANSWERS TO SELF ASSESSMENT QUESTIONS:  

15.2.4.   

(i)   

 

 (ii)  

 

15.3.5. (i) Suppose that  is an irreducible element in  which is not a unit. We have to 

show that  is a prime element in  For this, suppose that  Since 

 is irreducible, we have that either  or . This implies 

that either  is constant or is constant, and so either  is a unit or  is unit. 

This shows that every irreducible element in  is either a unit or a prime element. 
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(ii) From the definitions of prime element and irreducible element, it is clear that every prime 

element is an irreducible element. 

15.8 SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 

 

-Dr. Noorbhasha Rafi 
 



 LESSON -16 

POLYNOMIALS OVER THE RATIONAL FIELD 

OBJECTIVES: 

The objectives of this lesson are to 

 Define primitive polynomial, content of a polynomial, integer monic polynomial 

 State and prove Gauss lemma. 

STRUCTURE: 

16.1. Introduction 

16.2. Polynomials over the Rational Field 

16.3. Model examination questions 

16.4  Summary 

16.5  Technical Terms 

16.6  Answers to Self Assessment Questions 

16.7  Suggested Readings 

16.1. INTRODUCTION: 

          We define the concepts: primitive polynomial, content of a polynomial and integer 

monic polynomial. We state and prove Gauss lemma. 

16.2. POLYNOMIALS OVER THE RATIONAL FIELD 

16.2.1. Definition: The polynomial   are 

integers is said to be primitive if the greatest common divisor of  is 1. 

16.2.2. Lemma: If ( )f x  and ( )g x are primitive polynomials then ( ) ( )f x g x  is a primitive 

polynomial. 

Proof: Consider the polynomials  and . 

Suppose ( )f x  and ( )g x are primitive polynomials. 

Then gcd{ }=1 and gcd{ }=1. 

Now 2

0 1 2( ) ( ) ... k

kf x g x c c x c x c x     , where  

Now we prove that gcd{ 0 1, ,..., kc c c }=1 

Suppose gcd 0 1, ,..., kc c c  1. Then choose a prime number p >1 such that gcd{ 0 1, ,..., kc c c } = 

p. Then  for 0 i k  . 

Suppose , for 0 i n  , we get gcd{ 0 1, ,..., na a a }=1, which is a contradiction. 

\ , for some , 0jp a j j n   .  

By similar argument, we get \ , for some , 0kp b k k m   

\ .j kp a b  

Now 0 1 1 2 2 0... ...j k j k j k j k j k j kc a b a b a b a b a b              

Since , we get \ j kp c  , which is a contradiction to for . 

 
Hence ( ) ( )f x g x  is a primitive polynomial. 
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16.2.3. Definition: The content of the polynomial  , where the 

 are integers, is the greatest common divisor of the integers . 

16.2.4. NOTE: 1. Any polynomial  with integer coefficients can be written as 

, where  is the content of  and  is a primitive polynomial. 

2. The content of every primitive polynomial is 1. 

16.2.5. Theorem (Gauss Lemma): If the primitive polynomial  can be factored as the 

product of two polynomials having rational coefficients, it can be factored as the product of 

two polynomials having integer coefficients. 

Proof: Assume that the primitive polynomial  can be factored as the product of two 

polynomials  and  having rational coefficients. 

. ( ) ( ) ( )i e f x u x v x , where  and  have rational coefficients. 

The coefficients of  and  can be written as 1 2

1 2

( ) ( ) and ( ) ( )
a a

u x x v x x
b b
   , where 

( )x  and ( )x  are primitive polynomials with integer coefficients. 

1 2 1 2

1 2 1 2

Now ( ) ( ) ( ) ( ) ( )
a a a a

f x x x x x
b b b b
      

Take 1 2 1 2anda a a b bb  . So ( ) ( ) ( ) ( ) ( ) ( )
a

f x x x bf x a x x
b
       

Since  is primitive, the content of  is 1 and hence the content of  is b. 

By known result, ( ) ( )x x  is primitive.  

 the content of ( ) ( )x x  is 1 and the content of ( ) ( )a x x  is a. 

Therefore  and hence ( ) ( ) ( )f x x x  , where ( ) and ( )x x   having integer 

coefficients. 

16.2.6. Definition: A polynomial is said to be integer monic if all its coefficients are integers 

and it’s highest is 1. 

16.2.7. Note: Every integer monic polynomial is primitive but converse is not true. 

16.2.8. Corollary: If an integer monic polynomial factors as the product of two non-constant 

polynomials having rational coefficients then it factors as the product of two integer monic 

polynomials. 

Proof: By the above note, the Gauss lemma is valid to this corollary. 

16.2.9. Self assessment Question: Prove that the polynomial  is an irreducible 

polynomial over the field  of the integers modulo 31. 

16.3. MODEL EXAMINATION QUESTIONS: 

16.3.1. Define the term ‘primitive polynomial’. If  and  are primitive polynomials 

then show that  is also a primitive polynomial. 

16.3.2. State and prove Gauss Lemma 

16.3.3. Prove that   is an irreducible polynomial over the field of integers modulo 

2. 

16.3.4. Prove that the polynomial  is an irreducible polynomial over the field  of 

integers modulo 31. 
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16.4  SUMMARY: 

  We introduced some concepts like primitive polynomial, content of a polynomial, 

integer monic polynomial. We proved that the product of two primitive polynomials is also a 

primitive. Gauss lemma was proved. 

16.5  TECHNICAL TERMS: 

Primitive polynomial: A polynomial , where 

 are integers, is said to be primitive if g.c.d{ . 

Content: If   , where   are integers, then 

the g.c.d of is called the content of  

Monic polynomial: A polynomial  is said to be  

monic if  

Integer Monic: A polynomial  is said to be integer 

monic if  are integers and  

16.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:  

16.2.9. In a contrary way, suppose that the polynomial  is not an irreducible 

polynomial over the field  Then  for some 

polynomials  and  over . Now either  or  is of degree 1. Suppose 

. Since  is a factor of  the polynomial  has root in 

 For some , we have  for some . 

Since 31 is a prime number, the number of integers lies between 0 and 31, which are 

relatively prime to 31 is 30. So  (Euler’s function  is used here). [Recall the 

statement of the Euler’s theorem: If  is relatively prime to , then  where 

 is the number of non-negative integers  that are relatively prime to n]. Now 31 is a 

prime number and   is relatively prime to 31 

 Already we have  

 By transitive property we get   

 Since 3 is relatively prime to 31 we have  

 (by Euler theorem). Now  

 (by transitive) 

 or   Since 31 cannot divide   (otherwise 

31 \ 3 since 31 is prime), it follows that 31 divides  a 

contradiction (since  This shows that   is irreducible over  

 

16.7 SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 
 

-Dr. Noorbhasha Rafi 



LESSON - 17 

POLYNOMIAL RINGS OVER COMMUTATIVE 

RINGS 
 

OBJECTIVES: 

The objectives of the lesson are to 

 state and prove Eisenstein criterion 

 apply the Eisenstein criterion to find the irreducibility of a given polynomial. 

 define the concepts like: polynomial ring  over a given ring R in n- 

variables, field of rational functions, unique factorization domain. 

 find the influence of the structure of R on that of   

 apply the Gauss lemma to the ring , where R is the unique factorization domain. 

 prove some basic theorems and lemmas  

STRUCTURE: 

17.1  Introduction 

17.2  The Eisenstein criterion principle 

17.3  Polynomial rings over commutative rings 

17.4  Model examination questions 

17.5  Summary 

17.6  Technical terms 

17.7  Answers to the self-assessment questions 

17.8  Suggested Readings 

17.1. INTRODUCTION: 

 We continue the study of polynomials. We state and prove Eisenstein criterion. We 

use the Eisenstein criterion in verifying whether a given polynomial is irreducible. We define 

, the polynomial ring in  over   the ring of polynomials in n variables 

 over . We study the influence of the structure of  on that of  

We define unique factorization domain. If  is an unique factorization domain then so is 

 Then we are able to extend this to  by using mathematical induction. 

Also we prove that if F is a field, then  is a unique factorization domain. 

17.2. THE EISENSTEIN CRITERIAN PRINCIPLE 

17.2.1. Theorem (The Eisenstein Criterion): Let 0 1( ) ... n

nf x a a x a x    be a polynomial 

with integer coefficients. Suppose that for some prime number p, 
2

1 2 0 0\ , / , / ,..., / , \np a p a p a p a p a . Then  is irreducible over the rationals. 

Proof: Suppose there is a prime number p such that 
2

1 2 0 0\ , / , / ,..., / and \np a p a p a p a p a . 

Without loss of generality, we can assume that  is a primitive polynomial. 

By Gauss Lemma,  can be factored as the product of two polynomials having rational 

coefficients, it can be factored as the product of two polynomials having integer coefficients. 

We prove that  is irreducible over the rationals.  

If f(x) is reducible, then  where 0 1( ) ... r

rg x b b x b x    ,  
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0 1( ) ... s

sh x c c x c x    and  and , where b’s and c’s are 

integers. 

Here 0 0 0a b c  

Since 0 0 0/ , we get /p a p b c . 

Since p is prime, we get either 0/p b or 0/p c  or both. 

If 0/p b  and 0/p c , then 
2

0 0/p b c   

2

0/p a , which is a contradiction to 
2

0/p a  

either 0/p b or 0/p c  

Suppose 0/p b and 0/p c . 

Since  is primitive, we get that  is primitive. 

/ , for some ,1kp b k k r    

We have that 0 1 1 0...k k k ka b c b c b c    . 

Since 0/p c  and / kp b , we get 0/ kp b c  

/ kp a , which is a contradiction to / kp a . 

( )f x  is irreducible over rationals. 

Suppose 0/p c  and 0/p b . 

Since  is primitive, we get  is primitive. 

/ , for some ,1kp c k k s    

We have 0 1 1 0...k k k ka b c b c b c    . 

Since / kp c  and 0/p b , we get 0/ kp b c . 

/ kp a , which is a contradiction to / kp a . 

( )f x  is irreducible over rationals. 

17.2.2. Problem: If  is a prime number, then prove that the polynomial  is 

irreducible over the field of rational numbers. 

Solution: Suppose  where  for  and 

 Now  divides  for  do not divide ; and  does not 

divide  By applying the Theorem 17.2.1(Eisenstein Criterion), we can conclude that the 

polynomial  is irreducible over the field of rational numbers. 

17.2.3. Problem: Prove that the polynomial  where p is a prime number, 

is irreducible over the field of rationals. 

Solution: Here we consider the polynomial  and 

use the Eisenstein Criterion. 

We   know that 

  

Where  
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Clearly,  and  does not divide  Also  does not divide  Hence by 

Theorem 17.2.1(Eisenstein Criterion), we conclude that 

 is irreducible over the field of rational numbers. 

Hence  where p is a prime number, is irreducible over the field of 

rationals. 

17.3. POLYNOMIAL RINGS OVER COMMUTATIVE RINGS: 

17.3.1. Definition: Let  be a commutative ring with unit element 1.  

(i) The polynomial ring in  over  is denoted by  and it is defined as  

 
The equality, addition (+), and multiplication (.) are defined same as in 

polynomials over fields. Hence it is easy to verify that  is a 

commutative ring with unit element.  

(ii) The ring of polynomials in the  variables  over R is denoted by 

 and defined as follows 

.  is called the ring of 

polynomials in  over . Its elements are of the form 

 where equality and addition are defined coefficient wise 

and where multiplication is defined by use of the distributive law and the rule of 

exponents 

 

17.3.2. Lemma :  If  is a commutative ring with identity, then so is  

  If  is an integral domain, then so is  

Proof: (i) We have that  is a ring. 

Clearly  is the identity element of  

Let . 

Then   where  

           where  

We prove that  

 
                                          

Now  
 

 

Since  is commutative, we have that  

 

 
Hence  is a commutative ring with identity. 

(ii) Let with  and  

Then   where  

           where  
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Now  

 
                                          

                       Now  

Since  and  and  is an integral domain, we get that  and 

hence  

 
Thus  is an integral domain. 

17.3.3. Corollary: (i) If  is a commutative ring with identity, then so is   

                   (ii) If  is an integral domain, then so is  

Proof: (i) Let  be a commutative ring with identity  

Now we prove this by induction on . 

Suppose  then by Lemma 17.3.2, we have that  is a commutative ring 

with identity 1.  

Suppose the result is true for  

That means  is a commutative ring with identity 1. 

Then by Lemma 17.3.2.(i), is a commutative ring with identity 1, we get that 

 (i.e. ) is a commutative ring with identity 1.  

(ii) Let  be an integral domain 

We prove this also by induction on . 

Suppose  then by Lemma 17.3.2.(ii), we have that  is an integral domain. 

Assume the result is true for  

That means  is an integral domain 

That implies again by Lemma 17.3.2.(ii), we get that  (i.e. 

) is an integral domain. 

In particular, when  is a field  must be an integral domain. As such 

we can construct its field of quotients; we call this the field of rational functions in 

 over the field  and denote it by  

17.3.4. Definition: Let R be an integral domain with unit element 1. 

(i) An element  is said to be a unit in  if , for some  

(ii) Two elements  in  are said to be associates if , where  is a unit element 

in . 

(iii) An element  which is not a unit element of , will be called irreducible (or a 

prime element) if , when ever  with  both in , then one of  or must 

be a unit element in . 

17.3.5. Definition: An integral domain  with unit element is said to be a unique 

factorization domain if  

(i) Any non-zero element in  is either a unit or can be written as the product of a finite 

number of irreducible elements of   

(ii) The decomposition in part (i) is unique up to the order and associates of the 

irreducible elements. 
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i.e. If  where  and  are irreducible elements 

 then  and for each  there corresponds  such 

that  and  are associates. 

17.3.6. Lemma : If  is a unique factorization domain and if  are in , then  and  have 

a greatest common divisor  in . More over, if and  are relatively prime 

, whenever  then . 

Proof: Let  is a unique factorization domain and if  are in  

Then we can write ,  where  and  are irreducible 

elements for   

Without loss of generality we can assume that . 

Now we prove this result by using induction on  

Suppose , then   

If there is  ( such that  is an associate of  then . 

If there is no  ( such that  is an associate of  then  

Hence the gcd of  and  exists for  

Assume the result is true for  

Now we prove this result is true for   

Suppose  

Take  Then . 

By the induction hypothesis, the gcd of  and  exists. 

Let  

If there is  ( such that  is an associate of  then . 

Hence gcd exists for  and . 

Let  with  and . 

Since R is a unique factorization domain, we can write  

  

  

, where and  are irreducible elements for  

. 

Since , there exists  such that . 

 
Since  is a unique factorization domain and  we have that  is associate of 

either  or , for some or . 

Suppose that  is associate of  then  and  

Since , we get that , which is a contradiction to irreducible element  

 is not an associate of , for all . 

Hence  is an associate of  for some  

 

 

 

17.3.7. Corollary: If  is an irreducible element and  then   or . 
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Proof: Let  be an irreducible element of  and . 

We prove that  or   

Suppose  does not divides  

Since  is irreducible and  does not divides , we get that  

By the above result we get that . 

17.3.8. Definition: Let  be a unique factorization domain. 

(i) The content of given polynomial  in  is defined to 

be the gcd of  We denote the content of  by  

(ii) Given polynomial  in  is said to be primitive if 

 

17.3.9. Self Assessment Question: Let  Then there exist a primitive polynomial 

 such that  where  

17.3.10. Lemma : If  is a unique factorization domain, then the product of two primitive 

polynomials in  is again a primitive polynomial in . 

Proof: By Lemma 16.2.2, we have the proof. 

17.3.11. Corollary: If  is a unique factorization domain and if  are in  then 

 

Proof: Let  be in  

We can write  and , where  and ,  and 

 are primitive polynomials. 

By Lemma 17.3.10,  is a primitive polynomial.  

       Now  

         

                 

           

           

          . 

17.3.12. Self Assessment Question: If  is a unique factorization domain and if 

 then  

17.3.13. Notation: Hence forth, we consider  to be  a unique factorization domain. Since it 

is an integral domain, we have that  can be embedded in a field  (called the field of 

quotients of ) 

(i) If we take a polynomial  then the coefficients of  are from . 

Since  the coefficients of  are from . 

Therefore . Hence  

(ii)  are rings and  

 is a subring of  
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17.3.14. Self Assessment Question:  If  then prove that  where 

 and  

17.3.15. Lemma : If  in  is both primitive and irreducible as an element of  

then it is irreducible as an element of . Conversely, if the primitive element  in  

is irreducible as an element of it is also irreducible as an element of . 

Proof: Let  be both primitive and irreducible polynomial of . 

Now we prove that  is irreducible as an element of  

Suppose  is not irreducible over . 

Then  where  are in  and are of positive degree. 

Now  and  where  and  

Also  where    and 

 are primitive in  

 Now  

         

                                                    

                                  

Since  are primitive, we have that  is primitive and hence the content 

of the right hand side is .  

Since  is primitive, the content of the left hand side is  

 
Hence  which is a contradiction to  is irreducible in  

 is irreducible over  

Conversely, assume that a primitive polynomial  in  is irreducible over  

We prove that  is irreducible over . 

Suppose  is not irreducible over . 

Then  where  are in  and are of positive degree. 

 Since  is a subring of  we get that  is not irreducible over , which is 

a contradiction.  

    is irreducible over  

17.3.16. Lemma : If is a unique factorization domain and if  is a primitive polynomial 

in , then it can be factored in a unique way as the product of irreducible elements in 

. 

Proof: Let be a unique factorization domain and let  be a primitive polynomial in 

 

Then  By lemma 15.3.3, we can write  where 

 are irreducible polynomials in . 

Since  for  we get that   where  

for . 

   Moreover, , where  is primitive polynomial in  for   

Now    
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By the primitivity of  and of , we have the content of left hand side 

as  and the content of right hand side as  are equal. 

  

     Hence , where  is irreducible polynomial in . 

Uniqueness: Suppose  where each  is irreducible in  

for    

Since  is primitive, each  is primitive in . Since by Lemma 15.3.3, the 

uniqueness in , we get and  are equal (up to associates) in some order.  

 Hence  has a unique factorization as a product of irreducible in . 

17.3.17. Self Assessment Question: Suppose that  is an unique factorization domain. If 

 is an irreducible element of , then the constant polynomial defined by  is 

irreducible in   

17.3.18. Theorem: If is a unique factorization domain then so is . 

Proof: Let is a unique factorization domain.  

We prove that  is a unique factorization domain.  

Let . We can write  in a unique way as  where  and 

is a primitive polynomial in   

By the above lemma, we can decompose  in a unique way as 

 where each  is irreducible over  for    

Suppose  Then  

 
 for  

 each is a constant polynomial, . 

Since  and R is a unique factorization domain. We get that  has a unique factorization.  

has a unique factorization in . 

  is a unique factorization domain.  

17.3.19.  Self Assessment Question: If  is a unique factorization domain then so is 

 

17.3.20. Self Assessment Question:  If  is a field then  is a unique 

factorization domain. 

17.4. MODEL EXAMINATION QUESTIONS: 

17.4.1. State and prove Eisenstein criterion principle. 

17.4.2. Define the concepts ‘primitive polynomial’ and ‘irreducible polynomial’. 

   If  be a primitive polynomial, then prove that  is irreducible in  

    is irreducible in . 
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17.5 SUMMARY:  

We stated and proved the Eisenstein criterion. We used the Eisenstein criterion to find out 

whether a given polynomial is irreducible. Some abstract algebra concepts like the ring of 

polynomials in one indeterminate  over a given ring , the ring of polynomials in the  

variables over , field of rational functions, associates prime element, unique factorization 

domain, content, primitive are introduced. We proved that if  is an integral domain 

(respectively, commutative ring with unity 1). Then so is , and we also extended this to  

 If  is a unique factorization domain, then so is  and we also extended 

this to   If  is a field, then and we also extended this to  is a 

unique factorization domain. 

17.6 TECHNICAL TERMS: 

Field of rational functions:  If  is a filed, then is an integral domain. Let 

 be the field of quotients of . Then  is called 

the field of rational functions in  over  

Unit element: Let  be an integral domain with unit element 1. Then an element  is 

said to be a unit in  if there corresponds an element  such that  

Associates: Two elements  are said to be associates if  for some unit  in R. 

Irreducible element: An element  which is not a unit is called irreducible ( or a prime 

element) if whenever  with , then either  or  is unit in . 

Unique factorization Domain: An integral domain  with unit element is called a unique 

factorization domain if  

(i) For   is a unit, or , where are 

irreducible elements; and  

(ii) If   where each  and  are irreducible elements of 

, then  and for each  there corresponds   such 

that  and are associates. 

Content: Suppose  is a unique factorization domain. Let 

. The content of  is defined to be a g.c.d. 

of  

Primitive: Suppose  is a unique factorization domain. A polynomial  over  is said to 

be primitive if   

17.7 ANSWERS TO SELF ASSESSMENT QUESTIONS: 

17.3.9: Suppose  . Since  is a g.c.d of 

 we have that , for some  for , and the g.c.d of  

 is 1. 

Now,  

                    

                    

                    where  



Center for Distance Education  17.10   Acharya Nagarjuna University 

17.3.12: We prove this result by using the principle of mathematical induction on  

If , then the result follows from the corollary 17.3.11. 

Now suppose the induction hypothesis that the result is true for . 

Now consider       (by corollary 17.3.11) 

                                               

                                               By induction hypothesis. 

This shows that   

This completes the proof of the corollary. 

17.3.14: Suppose  

We know that  

Therefore  for some  for  

Now  

                   

                   where  and 

  . 

This completes the proof. 

17.3.17: Suppose that  for two polynomials and  over . 

Now  

and  are constant polynomials. 

If  and , then  a contradiction to the fact that 

 is irreducible in . Hence  is also irreducible. 

17.3.19: We prove this corollary by mathematical induction on  

If  then by theorem 17.3.18, we get that  is an unique factorization domain. 

Suppose the induction hypothesis that if  is a unique factorization domain, then is also 

a unique factorization domain. 

Now  by the theorem 17.3.18, we get that  is a unique 

factorization domain. 

17.3.20: Since  is a field, it is an integral domain. 

Since every non zero element of  is a unit, we have that  is a unique factorization domain. 

Therefore by the self-assessment question 17.3.19, we get that  is a unique 

factorization domain. 

17.8  SUGGESTED READINGS: 
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2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 
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LESSON - 18 

VECTOR SPACES-ELEMENTARY BASIC 

CONCEPTS 
 

OBJECTIVES: 

The objectives of this lesson are: 

 Define the vector space over the field F, examples, define subspace of a vector space, 

define homomorphisms on vector spaces properties of vector spaces 

 Define kernel of a homomorphism and define linear transformation 

 Define quotient of quotient space  

 Understand and derive some properties of quotient space 

 Define isomorphism on vector space and able to study that every homomorphic image of 

a vector space is isomorphic to its quotient space 

 

STRUCTURE: 

18.1. Introduction 

18.2. Elementary basic concepts 

18.3. Model examination questions 

18.4  Summary 

18.5  Technical Terms 

18.6  Answers to Self Assessment Questions 

18.7  Suggested Readings 

18.1. INTRODUCTION: 

In this Lesson we shall denote the set  as the set of all polynomials in  over the 

field  and  as the set of all polynomials of degree less than  We prove some important 

properties on vector spaces and also we derive every homomorphic image of a vector space is 

isomorphic to its quotient space. Later, we define internal direct sum of vector spaces and 

prove that internal direct sum of vector space  is isomorphic to external direct  sum of   

18.2. ELEMENTARY BASIC CONCEPTS: 

18.2.1. Definition: A non-empty set  is said to be a vector space over a field  if  is an 

abelian group under an operation which we denote by , and if for every ,F v V   there is 

defined an element, written  in subject to  

1.  v w v w      

2.  v v v       

3.    v v    

4. 1. ,v v  for all , ; ,F v w V    where the  represents the unit element of  under 

multiplication. 

We shall consistently use the following notations: 

a.  will be a field. 
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b. Lower case Greek letters will be elements of ; we shall often refer to elements of  

as scalars. 

c. Capital Latin letters will denote vector spaces over . 

d. Lower case Latin letters will denote elements of vector spaces. We shall often call 

elements of a vector space as vectors. 

18.2.2. Example: Let  be a field and let  be a field which contains  as a   subfield. 

Here  is the set of vectors. Additions of vectors is addition composition in the field . Since 

 is a field, we have that  is an abelian group. 

Now the elements of  constitute the set of scalars. The composition of scalar multiplication 

is the multiplication composition in the field . 

Since  is a field, we have  , , ,v K F v K v K       . 

If  is the unity element of , then  is also the unity element of the subfield . Let 

, and , .F v w K     

(i)  v w v w      ( By left distributive law in ) 

(ii)  v v v       ( By right distributive law in ) 

(iii)    v v    ( By associativity of multiplication in ) 

      (iv) 1.v v  and 1 is the unity element of . Since 1 is the unity element of , we get     

1.v v K   

Therefore,  is a vector space over the field. 

18.2.3. Example: Let  be a field and let  be the totality of all ordered tuples over  

  1 2. , , ,..., / ,1n ii e V F i n        

Two elements    1 2 1 2, ,..., and , ,...,n n       of  are declared to be equal if and only if 

for all 1,2,..., .i i i n    

Now, we introduce the requisite operators in  to make of it a vector space by defining: 

1.      1 2 1 2 1 1 2 2, ,..., , ,..., , ,...,n n n n                 

2.    1 2 1 2, ,..., , ,..., , for .n n F          

First we prove that  is an abelian group. 

Let      1 2 1 2 1 2, ,..., , , ,..., , , ,...,n n n V           

     

   

      

      

   

 

1 2 1 2 1 2

1 1 2 2 1 2

1 1 1 2 2 2

1 1 1 2 2 2

1 2 1 1 2 2

1 2 1 2

Now , ,..., , ,..., , ,...,

, ,..., , ,...,

, ,...,

, ,...,

, ,..., , ,...,

, ,..., , ,...

n n n

n n n

n n n

n n n

n n n

n

        

        

        

        

        

    

   

    

      

      

    

     1 2, , ,...,n n     

 

Addition is associative in  

Existence of additive identity: Let  1 2, ,..., n V     
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Since 

 0 , we have 0,0,...,0F V 
     

 

1 2 1 2

1 2

Now , ,..., 0,0,...,0 0, 0,..., 0

, ,...,

n n

n

     

  

    


 

             is the additive identity element of  

Existence of additive inverse: Let  1 2, ,..., n V    . Then  1 2, ,..., n V       

     

 

1 2 1 2 1 1 2 2Now , ,..., , ,..., , ,...,

0,0,...,0

n n n n                  


 

 1 2, ,..., n       is the additive inverse element of  1 2, ,..., n    

 is a group. 

Commutativity of addition: Let    1 2 1 2, ,..., , , ,...,n n V        

     

 

   

1 2 1 2 1 1 2 2

1 1 2 2

1 2 1 2

Now , ,..., , ,..., , ,...,

, ,...,

, ,..., , ,...,

n n n n

n n

n n

           

     

     

    

   

 

 

addition is commutative. 

 is an abelian group. 

Let    1 2 1 2, ,..., , , ,...,n n V       and 1 2, F    

     

      

 

   

   

1 1 2 1 2 1 1 1 2 2

1 1 1 1 2 2 1

1 1 1 1 1 2 1 2 1 1

1 1 1 2 1 1 1 1 2 1

1 1 2 1 1 2

1. Now , ,..., , ,..., , ,...,

, ,...,

, ,...,

, ,..., , ,...,

, ,..., , ,...,

n n n n

n n

n n

n n

n n

             

        

           

           

       

      

   

   

 

 

 

 

         

 

   

   

1 2 1 2 1 2 1 1 2 2 1 2

1 1 2 1 1 2 2 2 1 2

1 1 1 2 1 2 1 2 2 2

1 1 2 2 1 2

2. Now , ,..., , ,...,

, ,...,

, ,..., , ,...,

, ,..., , ,...,

n n

n n

n n

n n

             

           

           

       

    

   

 

 

 

 

         

      

 

  

1 2 1 2 1 2 1 1 2 2 1 2

1 2 1 1 2 2 1 2

1 2 1 2 2 2

1 2 1 2

3. Now , ,..., , ,...,

, ,...,

, ,...,

, ,...,

n n

n

n

n

             

        

      

    









 

 

     

1 2

1 2 1 2 1 2

4. Let , ,..., and 1

Now 1 , ,..., 1. ,1. ,...,1. , ,...,

n

n n n

V F  

        

 

 
 

  is a vector space over . 

18.2.4. Example: Let  be any field and let , the set of polynomials in  over  
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Then  is a vector space over  with respect to addition of two polynomials as a 

addition of vectors and the product of polynomials by an element of  as a scalar 

multiplications. 

18.2.5. Example: In  let nV  be the set of all polynomials of degree less than  Using the 

natural operations for polynomials of addition and multiplication, nV  is a vector space over . 

Here  1

0 1 1 1 2 1... / , ,...,n

n n nV x x F     

       

18.2.6. Definition: Let  be a vector space over  and W V . Then  is said to be a 

subspace of  if  itself is a vector space over  with respect to the operations of vector 

addition and scalar multiplication in  

Equivalently,  is a subspace of  whenever 1 2, ; ,w w W F   implies that 

1 2w w W    

18.2.7. Definition: Let  and  be two vector spaces over . The mapping  of  into  is 

said to be a homomorphism if  

1.  1 2 1 2u u T u T u T    

2.    1 1 1 2; for all , and allu T u T u u U F      

If  in addition, is one-to-one, we call it as an isomorphism.  

Define kernel of  as / 0u U uT  , where  is the identity element of the addition in  

18.2.8. Self Assessment Question: 

Kernel of a homomorphism  is a subspace of  

18.2.9. Note: 

1. The set of all homomorphisms of  into V will be written as  

2.  can be shows to be a ring, is called the ring of Linear transformations on 

 

3.  represents the zero of the addition in  0 represents the zero of the addition in  

and  represents the additive inverse of the element  of  

4. Kernel of a homomorphism  is  if and only if  is an isomorphism. 

18.2.10. Lemma: If  is a vector space over  then  

1. 0 0 for F    

2. 0 forv O v V   

3.     for ,v v F v V        

4. f 0, then 0 implies that 0i v v     

Proof: 1. Now  0 0 0 0 0        0 0 0   

0 0 0 0       0 and 0 0 0V      

0 0  ( By right cancellation law in ) 
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2. Now  0 0 0 0ov v v v    ( 0+0=0) 

0 0 0O v v v     0 and 0 0v V O v v    

0O v  (  is an abelian group with respect to addition of vectors and by right 

cancellation law in ) 

3. By (2), we have   0O v v      v v     

 v v O      

 v  is the additive inverse of v  

   v v      

4. Let 0v  and 0.v   

Suppose 0  . Then 
1 

 exists.  

Now 1 1 10 ( ) 0 0 ( ) 0 1. 0 0.v v v v v                  

Therefore we get a contradiction that 0.v   

Hence 0.   

Let V be a vector space over F and W be a subspace of V . Considering these merely as a 

abelian groups construct the quotient group V W ; its elements are the cosets ,v W where 

 , . ., / .v V i e V W v W v V     SinceV is an abelian group, ,v W W v   for all .v V  

18.2.11. Lemma: If V is a vector space over F and if W is a subspace of ,V then  V W  is a 

vector space over F , where 1 2,v W v W V W   and ,F   

1.    1 2 1 2( )v W v W v v W       

2.  1 1 .v W v W     

V W is called the quotient space of V by .W  

Proof: Let V be a vector space over F and  W be a subspace of .V  

We have that  / .V W v W v V    

Define ' '  on V W  as    1 2 1 2( ) ,v W v W v v W       for all 1 2, .v v V  

We prove that  ,V W  is an abelian group. 

Let 1 2 3 4, , ,v W v W v W v W V W     with 1 2v W v W   and 3 4 .v W v W    

Then 1 2v v W  and 3 4 .v v W   

Since W is a subspace of ,V  we get that    1 2 3 4 .v v v v W     That implies 

   1 3 2 4 .v v v v W     Therefore    1 3 2 4v v W v v W     and hence 

       1 3 2 4 .v W v W v W v W        Thus ' '  is well defined. 

Let 1 2 3, , .v W v W v W V W     

Now   
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1 2 3 1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

v W v W v W v W v v W

v v v W

v v v W

v v W v W

v W v W v W

         

   

   

    

     

 

Therefore ' '  is associative. 

Let . Then clearly, we have that   

Now   

Therefore   for all   

Hence   is the additive identity element in . 

Let . Since   we get that   and hence . 

Now . 

Therefore  for all  . 

Hence  is the additive inverse element of  in  . 

Thus  is a group. 

Let  . 

Since  we get that  

Now  

Therefore  is an abelian group. 

Define    by  

Let  with  

Then for all  

 
Therefore  is well defined. 

Let  and  

Now  

 

 

 

 
Now  

 

 
Now  
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Now    

 
Therefore  is a vector space over F. 

18.2.12. Theorem: If  is a homomorphism of  onto  with kernel  then  is 

isomorphism to  Conversely, if  is a vector space and , a subspace of , then 

there is a homomorphism of  onto . 

 

Proof: Let be a onto homomorphism with kernel .  

Define  by  

Let . 

Now 

.  

Therefore  is well defined and one-one. 

Let . Then there exists an element  such that . 

Therefore  is onto. 

Let  and  

Now  

                                            

                                        

 
Now  

                                    

                                     

                                   =  

Therefore  is a homomorphism and hence  

Conversely, let  be a vector space and  be a subspace of . 

Define  by  

Clearly, we have that  is well defined. 

For every  , we have that  Therefore  is onto. 

Let  and  

Now  

Now  

Therefore  is homomorphism 

Hence  is onto homomorphism. 
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       18.2.13. Definition: Let  be the vector space over  and let   be subspaces of 

.  is said to be the internal direct sum of   if every element  can be 

written in one and only one way as  where . 

18.2.14. Definition: Let  be any finite number of vectors spaces over the field . 

Consider  is the set of all ordered tuples  

where  i.e.  Two elements  

and  of V to be equal if and only if  for   Let 

,  and  Define 

 and 

 

Clearly,  is a vector space with its operations over . Thus  is called external direct 

sums of  and is denoted by . 

18.2.15. Theorems: If  is the internal direct sum of  then  is isomorphic to 

the external direct sum of  

Proof:  Let  be the internal direct sum of . Then every element  can be 

uniquely written as  where  for  

Let  be the external direct sum of  

That is  

We prove that  is isomorphic to . Define  by 

.  

T is well defined and one – one:  Let  Then  can be uniquely written as  

, where  for  where 

for .  

Now  

 
for  

for  

 

 

 
is well defined and one - one. 

T is onto: Let . Then there exists an element 

such that  

Therefore  is onto. 

T is homomorphism: Let  and  Then  can be uniquely written as  

, where for  and , where 

for .  

Now  
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Now  

                     

                     

                     

is homomorphism and hence  is an isomorphism. 

18.2.16. Self Assessment Question: If  and  are vector spaces over , define an addition 

and multiplication by scalars in  so as to make  into a vector space 

over . 

18.3. MODEL EXAMINATION QUESTIONS: 

18.3.1. If  is a vector space over  then prove that 

1 0 0 for F    

2 0 forv O v V   

3     for ,v v F v V        

f 0, then 0 implies that 0i v v     

18.3.2.  If V is a vector space over F and if W is a subspace of ,V then show thatV W  is a 

vector space over F , where 1 2,v W v W V W   and ,F   

1.    1 2 1 2( )v W v W v v W       

2.  1 1 .v W v W     

V W is called the quotient space of V by .W  

18.3.3. If  is a homomorphism of  onto  with kernel , then prove that  is isomorphism 

to . Conversely, if  is a vector space and , a subspace of , then show that there is a 

homomorphism of  onto . 

18.3.4. If  is the internal direct sum of  then prove that  is isomorphic to the 

external direct sum of  

18.4  SUMMARY: 

We proved some important properties on vector spaces and also we derived every 

homomorphic image of a vector space is isomorphic to its quotient space. Later, we proved 

that internal direct sum of vector space  is isomorphic to external direct sum of .  

18.5  TECHNICAL TERMS: 

Vector Space: A non-empty set V is said to be a vector space over a field F if V is an abelian 

group under an operation which we denote by +, and if for every ,F v V   there is defined 

an element, written αV, in subject to  
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1.  v w v w      

2.  v v v       

3.    v v    

4. 1. ,v v  for all , ; ,F v w V    where the  represents the unit element of 

under multiplication. 

Subspace: Let  be a vector space over  and W V . Then  is said to be a subspace of  

if  itself is a vector space over  with respect to the operations of vector addition and scalar 

multiplications in . 

Equivalently,  is a subspace of  whenever 1 2, ; ,w w W F   implies that 

1 2w w W    

Homomorphism: Let  and  be two Vector spaces over . The mapping  of  into  is 

said to be a homomorphism if  

1.  1 2 1 2u u T u T u T    

2.    1 1 1 2; for all , and allu T u T u u U F      

If  in addition, is one-to-one, we call it as an isomorphism.  

Define kernel of  as  / 0u U uT  , where  is the identity element of the addition in  

Internal Direct Sum: Let  be the vector space over  and let   be subspaces of 

.  is said to be the internal direct sum of   if every element  can be 

written in one and only one way as  where each . 

External Direct Sum: Let  be any finite number of vectors spaces over the field 

. 

Consider  is the set of all ordered  tuples  

wher  i.e.  Two elements  and 

 of  to be equal if and only if  for   Let 

,  and  Define 

 and 

 

        Clearly,  is a vector space with its operations over . Thus  is called external direct 

sums of  and is denoted by . 

18.6 ANSWERS TO SELF ASSESSMENT QUESTIONS: 

18.2.8. Let  be the kernel of a homomorphism of Let  implies 

. So that . Let . So that 

 Hence This satisfies that the conditions of subspace. 

Hence  is a subspace. 

18.2.16. Let .  Define  as  for 

all u in . So that  is a homomorphism of  into . . Define 

 as . That is  is a homomorphism of  into . Hence 
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 It is easy to show that  is a vector space over  under the 

addition and multiplication by scalars.   

18.7 SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 

 

-Dr. Noorbhasha Rafi 



LESSON - 19 

LINEAR INDEPENDENCE AND BASES 

OBJECTIVES: 

The objectives of this lesson are to 

 define the linear span and discuss the properties of linear span 

 define finite dimensional vector space, linearly independent, dependent vectors over a 

field and solve some problems on linearly independent and dependent vectors.  

 define basis of a vector space and prove that every finite dimensional vector space  is 

isomorphic to . 

 prove that any two bases of a finite dimensional vector space  over  have the same 

number of elements.  

 Prove that for every subspace  of a finite dimensional vector space  is finite 

dimensional,  and . 

 

STRUCTURE: 

19.1. Introduction 

19.2. Linear independence and bases 

19.3. Model examination questions 

19.4  Summary 

19.5  Technical Terms 

19.6  Answers to Self Assessment Questions 

19.7  Suggested Readings 

19.1. INTRODUCTION: 

In this lesson, we consider  as linear span of  where  is a non-empty subset of 

vector space  over a field . We can prove that  is a subspace of  and study the 

properties of linear span. We define linear independent, dependent vectors and finite 

dimensional vector space  and later prove some results on them. 

19.2. LINEAR INDEPENDENCE AND BASES: 

19.2.1. Definition: Let V  is a vector space over F  and if Vvvv n ,...,, 21 then any element of 

the form ,2211 nnvvv   where the ,Fi   is a linear combination over F of 

.,...,, 21 nvvv  

19.2.2. Definition: If S is a nonempty subset of the vector space ,V  then ),(SL the linear  

span of ,S is the set of all linear combinations of finite sets of elements of .S  

i.e.,  FssandSvvvvvvvvvSL iinnn  ',',,,,|,,)( 1212211221111   

19.2.3. Lemma: )(SL is a subspace of .V  

Proof: Let V be a vector space over .F  Let ).(, SLwv   Then nnsssv   2211  and 

,2211 mmtttw   where the ss ','  are in F and the ii ts , are all in .S  Let ., F  

Now  
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.)()()()()()(

)()(

22112211

22112211

mmnn

mmnn

tttsss

tttssswv








 

Therefore ).(SLwv    Hence )(SL is a subspace of .V  

 

19.2.4. Lemma: If TS , are subsets of ,V then 

1. TS  implies ).()( TLSL   

2. ).()()( TLSLTSL   

3. ).())(( SLSLL   

Proof:  

1. Assume that .TS    Let ).(SLv  Then ,2211 nnsssv    where the s' are 

in F and the ssi ' are all in .S  Since ,TS  we get that ,2211 nnsssv    

where the s' are in F and the ssi ' are all in .T  Therefore ).(TLv  Hence 

).()( TLSL   

2. Let ).( TSLv   Then ,22112211 mmnn tttsssv    where 

the ss ','  are in F and the ss ','  are all in .TS Since ss ','  are all in ,TS   

we can choose Ssss n  ,,, 21 and .,,, 21 Tttt m   Then 

)(2211 SLsss nn   and ).(2211 TLttt mm   Therefore v an 

element of )(SL an element of ).(TL  

Therefore )()( TLSLv  and hence ).()()( TLSLTSL   Conversely, let 

).()( TLSLv  Then , v where ).(),( TLSL    Since 

),(),( TLSL   we have that  linear combination of finite number of elements 

of S and  linear combination of finite number of elements of .T  That implies 

 v linear combination of finite number of elements of .TS Therefore 

)( TSLv  and hence ).()()( TSLTLSL  Thus ).()()( TLSLTSL   

3. Since ,1 F we have that ),(.1 SLss   for all .Ss Therefore ).(SLS  By 

condition 1, we have that )).(()( SLLSL   Let )).(( SLLv  Then ).(SLv  Then 

,2211 nnsssv   where the s' are in F and the ssi ' are all in ).(SL  Since 

ssi ' are all in ),(SL we can write ,
2211 kk iiiiiii ssss   where 

,' Fs Sssi ' and .1 ni   

Now, 

)()()( 22112222222121211121211111 nknknnnnnkkkk sssssssssv  

That implies ).(SLv Therefore )())(( SLSLL  and hence ).())(( SLSLL   

 

19.2.5. Definition: The vector space V is said to be finite-dimensional (over F ) if there is a 

finite subset S in V such that ).(SLV   

Note that 
)(nF is finite-dimensional over ,F for if S consists of the n vectors 

),1,,0,0(,),0,,1,0(),0,,0,1(  then ).(SLV   
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19.2.6. Definition: If V is a vector space over the field F  and if nvvv ,,, 21  are in ,V we say 

that they are linearly dependent over F if there exist elements n ,,, 21  in ,F not all of 

them ,0 such that .02211  nnvvv   

If the vectors nvvv ,,, 21  are not linearly dependent over ,F they are said to be linearly 

independent over .F  

 

19.2.7. Problem: Verify that given vectors )1,0,0(),0,1,0(),0,0,1(  are linearly independent or 

not 

Solution: Let .,, 321 F Consider ).0,0,0()1,0,0()0,1,0()0,0,1( 321    

Then .0,0,0 321    Hence given vectors )1,0,0(),0,1,0(),0,0,1( are linearly 

independent. 

 

19.2.8. Problem: Verify that given vectors )3,3,5(),3,1,3(),0,1,1( are linearly independent or 

not. 

Solution: Let .,, 321 F  Consider ).0,0,0()3,3,5()3,1,3()0,1,1( 321    

Then ).0,0,0()33,3,53( 32321321    That implies 

.033,03,053 32321321    From the equation ,033 32   we get 

that .32    If 13  then we get that 12  and .21   

Hence given vectors )1,0,0(),0,1,0(),0,0,1( are linearly dependent. 

 

19.2.9. Lemma: If Vvvv n  ,,, 21 are linearly independent, then every element in their linear 

span has a unique representation in the form nnvvv   2211 with the .Fi   

 

Proof: Let Vvvv n  ,,, 21 be linearly independent elements. Take  1 2, , , .nS v v v   Suppose  

( )x L S  has two representations say 1 1 2 2 n nx v v v      and 

1 1 2 2 n nx v v v     . 

Then 1 1 1 2 2 20 ( ) ( ) ( )n n nx x v v v             . Since Vvvv n  ,,, 21 are linearly 

independent, we have that 1 1 2 20, 0, , 0.n n             That implies 

1 1 2 2, , , .n n          Hence every element of ( )L S  has unique representation. 

19.2.10. Theorem: If Vvvv n  ,,, 21 then either they are linearly independent or some kv is a 

linear combination of the preceding ones, 1 2 1, , , .kv v v   

 

Proof: Let Vvvv n  ,,, 21 . 

Suppose 1 2, , , nv v v are linearly independent. Then there is, of course, nothing to prove. 

Suppose that 1 2, , , nv v v  are linearly dependent. Then there exist scalars 1 2, , , n F     not 

all of the 's are zero such that 1 1 2 2 0.n nv v v      Let k be the largest integer such 

that 0,k   for k n  and 0,i  for all .i k  Then 1 1 2 2 0.k kv v v      That implies 

1 1 2 2 1 1( ).k k k kv v v v          
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Since k  is non zero element of ,F we get that 1 .k F    That implies 
1 1 1

1 1 2 2 1 1( ) ( ) ( ).k k k k k kv v v v       

        Therefore kv  is a linear combination of its 

predecessors. 

 

19.2.11. Corollary: If 1 2, , , nv v v  in V have W as linear span and if 1 2, , , kv v v are linearly 

independent, then we can find a subset  1 2, , , nv v v   of the 

form
1 21 2, , , , , , ,

rn i i iv v v v v v  consisting of linearly independent elements whose linear span is 

also .W  

 

Proof: Suppose 1 2, , , nv v v are linearly independent. Then there is nothing to prove. Suppose 

that 1 2, , , nv v v  are linearly dependent. By the above theorem, choose the first element 

jv such that jv is the linear combination of its predecessors. Since 1 2, , , kv v v  are linearly 

independent, we have that .j k  

Thus 1 2 1 1, , , , , ,j j nv v v v v    has 1n  elements. Therefore, its linear span is contained in .W  

However, we claim that it is actually equal to .W  Let .x W Then x can be written as a 

linear combination of 1 2, , , nv v v .  

That is 1 1 2 2 .k k j j n nx v v v v v             Since jv is the linear combination of 

its predecessors, there exist 1 2 1, , , j F      such that 1 1 2 2 1 1.j j jv v v v          That 

implies 1 1 2 2 1 1 2 2 1 1( ) .k k j j j n nx v v v v v v v                     

That implies 1 1 1 2 2 2 1 1 1 1 1( ) ( ) ( ) .j j j j j j j j n nx v v v v v                         

 

19.2.12. Corollary: If V is a finite-dimensional vector space, then it contains a finite set 

1 2, , , nv v v  of linearly independent elements whose linear span is V . 

 

Proof: Let V be a finite-dimensional vector space. Then there exists a finite subset 

 1 2, , , mS v v v  such that ( ) .L S V  By the above corollary, there exists a finite subset of 

these denoted by 1 2, , , nv v v consisting of linearly independent elements, whose span is .V  

 

19.2.13. Definition: A subset S of a vector space V is called a basis of V if S consists of 

linearly independent elements (that is, any finite number of elements in S is linearly 

independent) and ( ).V L S  

 

19.2.14. Corollary: If V is a finite-dimensional vector space and if 1 2, , , mu u u span V then 

some subset of 1 2, , , mu u u forms a basis of .V  

 

19.2.15. Result: If V  is a finite dimensional vector space over F  then V  is isomorphic to 
( )nF . 

 

Proof: Let V be a finite-dimensional vector space. Then V has finite basis  1 2, , , .nv v v  

Let .v V Then v has a unique representation in the form 1 1 2 2 n nv v v v     with 

1 2, , , .n F     Define 
( ): nV F  by 1 1 2 2 1 2( ) ( ) ( , , , )n n nv v v v            . 
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Clearly,  is well defined. Let , 'v v V such that ( ) ( ').v v   Since , ' ,v v V , 'v v have a 

unique representations in the form 1 1 2 2 n nv v v v     and 

1 1 2 2' ,n nv v v v     where 1 2 1 2, , , , , , , .n n F        Since ( ) ( '),v v  then we 

have that 1 1 2 2 1 1 2 2( ) ( ).n n n nv v v v v v             That implies 

1 2 1 2( , , , ) ( , , , ).n n         That implies ,i i  for 1 .i n   That implies 

1 1 2 2 1 1 2 2 .n n n nv v v v v v           That implies '.v v Hence  is one-one. 

Let
( )

1 2( , , , ) .n

n F    Then there exists 1 1 2 2 n nv v v v V      such that 

1 2( ) ( , , , ).nv      Therefore  is onto. Let , ' .v v V  Then , 'v v have a unique 

representations in the form 1 1 2 2 n nv v v v     and 1 1 2 2' ,n nv v v v     where 

1 2 1 2, , , , , , , .n n F         

 Now 

1 1 2 2 1 1 2 2

1 1 1 2 2 2

1 1 2 2

1 2 1 2

( ') ( )

(( ) ( ) ( ) )

( , , , )

( , , , ) ( , , , )

( ) ( ').

n n n n

n n n

n n

n n

v v v v v v v v

v v v

v v

       

      

     

     

 

        

      

    

   

 

 

Let .F  

Now  

1 1 2 2

1 1 2 2

1 2

1 2

( ) ( ( ))

( )

( , , , )

( , , , )

( ).

n n

n n

n

n

v v v v

v v v

v

      

   

  

   



   

   

 

 



 

Therefore  is homomorphism and hence  is isomorphism. 

19.2.16. Self Assessment Question: If  is a finite dimensional and  is a homomorphism of 

 onto  prove that  must be one-to-one, and so, an isomorphism 

 

19.2.17. Lemma: If 1 2, , , nv v v is a basis of V over F and if 1 2, , , mw w w in V are linearly 

independent over ,F  then .m n  

 

Proof: Let 1 2, , , nv v v be a basis of V over F and let 1 2, , , mw w w be linearly independent 

elements of .V Since ,mw V we have that mw is a linear combination of 1 2, , , nv v v  and 

hence 1 2, , , ,m nw v v v are linearly dependent elements. Since 1 2, , , nv v v span ,V we have that 

1 2, , , ,m nw v v v  also span .V  

By corollary 1, 1 2, , , ,m nw v v v  has a proper subset 
1 2

, , , , ,
km i i iw v v v   where 1ki n  is a basis 

of .V  Repeat this process by adding 2 3 1,, , , mw w w     finally, we get that 

1 22 3, , , , , , , ,
mm j j jw w w v v v  where ( 1)mj n m    and is a basis of .V  Now consider 1.w  

Since 1 2, , , mw w w are linearly independent, 1w cannot be written as a linear combination of 
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2 3, , , .mw w w  Hence at least one iv must belong to the above basis. Therefore 1 1.m n    

Thus .m n  

 

19.2.18. Corollary: If V is finite-dimensional over F then any two bases of V have the same 

number of elements. 

Proof: Let 1 2, , , nv v v be a basis of V over F and 1 2, , , mw w w  be another basis of .V  By 

above lemma, we get that m n and .n m  Therefore .m n  

 

19.2.19. Corollary:
( )nF is isomorphic ( )mF  if and only if .m n  

Proof:
( )nF  has a basis  (1,0, ,0),(0,1, ,0), ,(0,0, ,1)    having n elements. Since 

( )nF is 

isomorphic ( )mF , the images of  (1,0, ,0),(0,1, ,0), ,(0,0, ,1)    is a basis of ( )mF if and 

only if .m n  

 

19.2.20. Corollary: If V is finite-dimensional over F  then V is isomorphic to 
( )nF  for a 

unique integer ;n in fact, n  is the number of elements in any basis of V over .F  

 

19.2.21. Definition: The integer n in the above corollary is called the dimension of V over 

.F It is denoted by dim .F V  

 

19.2.22. Corollary: Any two finite-dimensional vector spaces over F of the same dimension 

are isomorphic. 

 

Proof: Let , 'V V  be any two finite-dimensional vector spaces over F having the same 

dimension .n  Then 
( )nV F and 

( )' .nV F Therefore '.V V  

 

19.2.23. Lemma: If V is finite-dimensional over F and if 1 2, , , mu u u V  are linearly 

independent, then we can find vectors 1, ,m m ru u V   such that 1 2 1, , , , , ,m m m ru u u u u   is a 

basis of .V  

 

Proof: Let V be finite-dimensional over F and  1 2, , , mu u u V  be linearly independent. 

Suppose 1 2, , , nv v v be a basis of .V  Since these span ,V
1 2 1 2, , , , , , ,m nu u u v v v  also span 

.V That implies there is a subset of these of the form 
1 21 2, , , , , , ,

rm i i iu u u v v v  which consists 

of linearly independent elements which span .V Take 
1 21 2, , , .

ri m i m i m rv u v u v u       

Therefore 1 2 1, , , , , ,m m m ru u u u u   is a basis of .V  

 

19.2.24. Lemma: If V  is finite-dimensional and if W  is a subspace of ,V  then W  is finite-

dimensional,  and  

 

Proof: Let V  be a finite-dimensional and  W  be a subspace of .V  Let us take dim .V n  Then 

any 1n  elements in V  are linearly dependent. In particular, any 1n  elements in W  are 

linearly dependent. So we can find a largest set of linearly independent elements in 

1 2, , , , mW w w w  where .m n  Let .w W  Then 1 2, , , , mw w w w  are linearly dependent. That implies 

there exist 1 2, , , , m F      not all of them are zero’s such that 1 1 2 2 0.m mw w w w        
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Suppose 0.   Then by the linear independence of the ,iw  we get that 0,i   which is a 

contradiction. Therefore 0.   Since ,F  we have that 1 .F    Now 

 1 1 1 1

1 1 2 2 1 1 2 2( ) ( ) ( ) .m m m mw w w w w w w                       That implies 

  1 2, , , .mW L w w w  Therefore  1 2, , , mw w w is a basis of .W  Hence W is a finite 

dimensional vector space and . Thus  Since 

1 2, , , mw w w  are linearly independent elements of ,V  we have that 1 2 1 2, , , , , , ,m rw w w v v v   is a basis 

of V  with .m r n   Let / .v w V W   Since ,v V  we have that 

1 1 2 2 1 1 2 2 .m m m mv w w w v v v            That implies 

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

m m r r

m m r r

m m r r

v W w w w v v v W

w W w W w W v W v W v W

w W w W w W v W v W v W

     

     

     

         

             

             

 

 

Since 1 2, , , ,mw w w W   we have that 0iw W W    for 1 i m   and 

hence 1 1 2 2( ) ( ) ( ).r rv W v W v W v W          Therefore 

 1 2, , , rv W v W v W    span of / .V W  

Now we prove that 1 2, , , rv W v W v W    are linearly independent. Let 1 2, , , r F     

such that 1 1 2 2( ) ( ) ( ) 0 .r rv W v W v W W          Then 

1 1 2 2( ) 0r rv v v W W        and hence 1 1 2 2 .r rv v v W     
 
That 

implies 1 1 2 2 1 1 2 2r r m mv v v w w w          and hence 

1 1 2 2 1 1 2 2( ) ( ) ( ) 0.r r m mv v v w w w               Since 

 1 2 1 2, , , , , , ,r mv v v w w w  is a basis of ,V we have that 0i  and 0,i  for all , .i j  That 

implies  1 2, , , rv W v W v W    is linearly independent. Therefore 

 1 2, , , rv W v W v W    is a basis of / .V W  Hence 

 

Thus dim( / ) dim dim .V W V W   

 

19.2.25. Corollary: If A and B are finite-dimensional subspaces of a vector space ,V then 

A B is finite-dimensional and dim( ) dim( ) dim( ) dim( ).A B A B A B      

Proof: We have that .
A B A

B A B





Since A and B are finite dimensional, we get that 

dim( ) dim dim dim dim dim( ).
A B A

A B B A A B
B A B

   
         

   
 Therefore 

dim( ) dim dim dim( ).A B A B A B      

 

19.3. MODEL EXAMINATION QUESTIONS: 

19.3.1. Prove that )(SL is a subspace of .V  

19.3.2. Verify that given vectors )3,3,5(),3,1,3(),0,1,1( are linearly independent or not. 
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19.3.3. If Vvvv n  ,,, 21 then show that either they are linearly independent or some kv is a 

linear combination of the preceding ones, 1 2 1, , , .kv v v   

19.3.4. If  is a finite dimensional and  is a homomorphism of  onto  prove that  must 

be one-to-one, and so, an isomorphism. 

 

19.3.5. If V  is finite-dimensional and if W  is a subspace of ,V  then prove that W  is finite-

dimensional,  and . 

 

19.4  SUMMARY: 

We proved that  is a subspace of  and study the properties of linear span. We defined 

linear independent, dependent vectors and finite dimensional vector space  and later, 

derived some results on them. 

 

19.5  TECHNICAL TERMS: 

Linear Combination: Let V  is a vector space over F  and if Vvvv n ,...,, 21 then any 

element of the form ,2211 nnvvv   where the ,Fi   is a linear combination over 

F of .,...,, 21 nvvv  

Linear Span: If S is a non empty subset of the vector space ,V  then ),(SL the linear span of 

,S is the set of all linear combinations of finite sets of elements of .S  

i.e.,  FssandSvvvvvvvvvSL iinnn  ',',,,,|,,)( 1212211221111   

Finite-Dimensional Vector Space: The vector space V is said to be finite-dimensional (over 

F ) if there is a finite subset S in V such that ).(SLV   

 

Linearly Dependent and Linearly Independent: If V is a vector space over the field F  and 

if nvvv ,,, 21  are in ,V we say that they are linearly dependent over F if there exist elements 

n ,,, 21  in ,F not all of them ,0 such that .02211  nnvvv   

If the vectors nvvv ,,, 21  are not linearly dependent over ,F they are said to be linearly 

independent over .F  

 

Basis: A subset S of a vector space V is called a basis of V if S consists of linearly 

independent elements (that is, any finite number of elements in S is linearly independent) and 

( ).V L S  
 

19.6  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

19.2.16. Let  be one basis of V.  span of V. For if   

then  for some  Since T is an onto mapping.  for some 

 Now  So that  span 

of V. By known results we conclude that  are linearly independent. Let 

  and  If  then   

Since  are linearly independent. We have .  

Hence  T is one to one.  T is an isomorphism of V onto V.  
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LESSON - 20 

DUAL SPACES 

OBJECTIVES: 

The objectives of this lesson are to 

 prove that Hom(V, W) the set of all vector space homomorphism of a vector space V 

over F into a vector space W over F is a vector space over F under pointwise addition 

and scalar multiplication. 

 prove that dim Hom(V, W) = nm, where n = dimV and m = dimW. 

 define the dual space  of a vector space V. 

 prove that dim  = n, if dimV = n, V is a finite dimension vector space. 

 define annihilator, A(W), of a subspace W of a vector space. 

 Prove that  is isomorphic to / A(W) and dim A(W) = dimV – dimW, where V is a 

finite dimension vector space and W is a subspace of V. 

 A(A(W)) = W for any subspace W of a finite dimension vector space V.        

 

STRUCTURE: 

20.1. Introduction 

20.2. Dual Spaces 

20.3  Summary 

20.4  Technical Terms 

20.5  Self Assessment Questions 

20.6  Suggested Readings 

20.1. INTRODUCTION: 

In this lesson the set Hom(V, W) of all vector space homomorphism of a vector space 

V over F into a vector space W over F is realized as a vector space over F. The dual space  

of a vector space V is defined and studied. For a finite dimension vector space V it is shown 

that dim  = dimV. The annihilator A(W) of a subspace W of a vector space is defined and its 

dimension expressed interms of dimV and dimW, where V is a finite dimensional vector 

space.       

20.2. DUAL SPACES: 

20.2.1. Theorem: Let  be vector spaces over a filed . Then the set of all homomorphism 

of  into  is also a vector space over F. 

Proof: Let  Define  for all  

Let  and  

(i). Now  

           

           

          

So  is also a homomorphism of  into  and that  
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(ii). Now  

             

              

           

           

Therefore . 

(iii). We have  for all  and  hence   

Also we have that  for all  

(iv). For ant  define  by  for all  

  

Now  

             

             

So  Also we have that  

(v). Now  for all  

Hence  

Therefore  is an abelian group under addition.  

For any define  for all  

(vi). Let  

      Now  

                         

                  

                

Therefore  is a homomorphism of  into  and hence  

(vii). Clearly we have that  

(viii). Cleary we have that  

(ix).  Now  

          

          

            

          

Therefore  

Clearly  Hence is a vector space over . 

20.2.2. Theorem: Let  be finite dimensional vector spaces over a field  of dimensions 

 and  respectively. Then the dimension of the vector space   is  

Proof: Suppose  has a basis  consisting of  vectors and  has a basis 

 consisting of  vectors. 
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Let  Then   for some  and this 

representation of  is unique. 

Let  Define  by  

Clearly  is a homomorphism of  into  

Hence . 

Let  

Let  for  

We have 

 

, 

    for as  

Since  and that S is a linear combination of 

.  

So A spans  

Suppose that 

 

That implies  

Since  are linearly independent, we get  

Therefore  for all . 

Hence A is a linearly independent set in  that it is a basis. So dim 

 

20.2.3. Corollary. Let V be a finite dimensional vector space over a field F of dimension . 

Then  

20.2.4. Definition: Let V be a vector space over a field F. Then the vector space   

is called the dual space of V. 

20.2.5. Lemma: Let V be a vector space of dimension . If  then there is 

 such that  

Proof: Suppose V is a vector space of dimension  over F and  

Then  is a linearly independent set of V as  

So we get a basis of V of the form  

Now defined by  is a homomorphism of V 

into F and  
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20.2.6. Notation:  the dual of V is denoted by  is called the 

second dual of V. 

20.2.7. Theorem: Let V be a vector space over F of dimension . Then the canonical 

mapping  of V into  is an isomorphism of V onto     

Proof: Suppose V is a finite dimensional vector space of dimension  over a field F. we have 

that and  are dual and second dual of V. 

Let Define  by  for all   Now 

 

So  is a linear function on  and that   

Define   by  is the canonical mapping of V into  

  for all  

So   and that  

 

 is a homomorphism of V into  

Suppose that  

Now  and that  for all  That is  for all  

That is  for all  So  and that  So  is one one and 

that  But   So  

and hence  and that  is onto  

Hence  is an isomorphism of V onto  

20.2.8. Definition: Let V be a vector space over a field F and  be the dual of V and W be a 

subspace of V. Then the annihilator of W denoted by  is defined as 

 

20.2.9. Theorem: Let V be a finite dimensional vector space over F and W be a subspace of 

V. Then  is isomorphic to and   

Proof: Let V be a finite dimensional vector space of dimension  over F and W be a 

subspace of V. Let   and  be the dual spaces of V and W respectively. Let .  Let  

be the restriction of  to . So defined by  for all   Clearly 

. 

Define  by  for all  

 
             

                       

So T is a homomorphism of  into  
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Let . We have  

Let  We have a basis    of W consisting of m vectors. This can be 

extended to a basis of V of the form  where  

Let U be the linear span of  Now   

Define  by  

 
Clearly f is a linear functional on V and f=g on W that is  So  and  

and  is onto  Hence  

So  and that  

                                                                   

Hence the theorem. 

20.2.10.Corollary: Let V be a finite dimensional vector space and W be a subspace of V. 

Then  

Proof: V is a finite dimensional vector space over F and  is a subspace of V over F. 

Let dimV = n and dim  = m. Now n = dimV ≥ dim  = m. 

Since T: V →  define by T( ) =  is a canonical isomorphism, we identify    with  

 V.  

Note that  = {     V} and     → F is defined by (f) = f(v). 

Let    and let   . Now ( ) =  

So    and that     and that   . 

We have  =     

   =   (   ) 

   = n – (n – m) = m = . 

Since    and  = m =  . 

Therefore,  = .  

 

20.3  SUMMARY: 

We defined dual space  of a vector space V. For a finite dimension vector space V it 

is shown that dim  = dimV. The annihilator A(W) of a subspace W of a vector space V is 

expressed interms of dimV and dimW and some results on them are given.        

20.4  TECHNICAL TERMS: 

 Hom(V, W), V, W are vector spaces over a field F. 

 A(W), annihilator of a subspace W of a vector space V. 
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20.5  SELF ASSESSMENT QUESTION: 

1. prove that A(S) = A(L(S)), S is a subset of a vector space V and L(S) is the linear span of 

S.  

20.6  SUGGESTED READINGS: 

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.  

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second  Edition,   

    Cambridge Press, 1995.  

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974. 

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002. 

                         

-Dr. Noorbhasha Rafi 
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