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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging
ahead in the path of progress and dynamism, offering a variety of courses and research
contributions. I am extremely happy that by gaining ‘A"’ grade from the NAAC in the
year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,
PG levels apart from research degrees to students from over 221 affiliated colleges spread

over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with
the aim of taking higher education to the doorstep of all the sectors of the society. The
centre will be a great help to those who cannot join in colleges, those who cannot afford
the exorbitant fees as regular students, and even to housewives desirous of pursuing
higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,
and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,

courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,
these self-instruction materials have been prepared by eminent and experienced teachers.
The lessons have been drafted with great care and expertise in the stipulated time by these
teachers. Constructive ideas and scholarly suggestions are welcome from students and
teachers involved respectively. Such ideas will be incorporated for the greater efficacy of
this distance mode of education. For clarification of doubts and feedback, weekly classes

and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in the
years to come, the Centre for Distance Education will go from strength to strength in the
form of new courses and by catering to larger number of people. My congratulations to
all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof. K. GangadharaRao

M.Tech.,Ph.D.,
Vice-Chancellor I/c

Acharya Nagarjuna University
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MODEL QUESTION PAPER
Time : Three hours Maximum : 70 marks

Answer ONE question from each Unit. 5x14=170)

UNIT -1

—

. (a) State and prove Lagrange’s theorem on groups.
(b) If G is a group and H,K are two subgroups of G then show that HK is
a subgroup of G if and only if HK = KH

OR
2. (a) Let G be any group, g is a fixed element of G. Define ¢: G—G by ¢(x)
= gxg™. Then prove that ¢ is an isomorphism of G onto itself.
(b) State and prove Cauchy’s theorem for abelian groups.
UNIT - 11
3. (a) State and prove Caylay’s theorem.

(b) If O(G) = p* where p is a prime number then prove that G is abelian.
OR

. (a) If O(G) = p"; where p is a prime number, then prove that Z(G) # (e ).
(b) If p is a prime number and p | O(G) then prove that G has an element of
order p.

N

UNIT - 111

9,

. (a) Let G be a group and suppose that G is the internal direct product of
Ni, Nz, ..., Np. Let T=N; x N; x ...x N,,. Then prove that G and T are
isomorphic.

(b) If G and G' are isomorphic abelian groups, then prove that for every
integer s, G(s) and G'(s) are isomorphic.

OR

@)

. (a) Prove that a finite integral domain is a field.
(b) If U and V are ideals of R, let U+V = {u+ v/u € U, v € V} then
prove that U+V is also an ideal of R.



UNIT -1V

7. (a) If R is a commutative ring with unit element and M is an ideal of R, the
M is a maximal ideal of R if and only if R/M is a field.
(b) If f(x) and g(x) are primitive polynomials then prove that f(x)g(x) is
also a primitive polynomial.

OR
8. (a) Let R be a Euclidean ring and a, b € R. If b # 0 is not a unit in R then prove that
d(a) < d(ab).
(b) State and prove Gauss lemma.
UNIT -V

9. (a) If R is a unique factorization domain then prove that R[x] is also a unique
factorization domain.
(b) If V is a finite dimensional vector space and W is a subspace of V, then prove that
W is finite dimensional, dim W < dim V and dim(V/W) <dim V — dim W.

OR

10. (a) Prove that if V is a finite dimensional vector space over F then any two bases of V
have the same number of elements.
(b) Prove that if V and W are finite dimensional vector spaces of dimensions m and n
respectively over F then Hom (V,W) is of dimension mn over F.
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LESSON -0
PRELIMINARIES

OBJECTIVES:
The objectives of this lesson are to

«¢+ define the concept of a group and give certain examples.
++ state and prove the Lagrange’s theorem on subgroups of a finite group.
+¢ define the cyclic group and their generators and give some examples of cyclic groups.

STRUCTURE:

0.1 Introduction

0.2 Groups

0.3 Subgroups

0.4 Legrange’s Theorem

0.5 Cyclic groups

0.6 Model examination questions

0.7 Summary

0.8 Technical terms

0.9 Answers to self assessment questions
0.10 Suggested Readings

0.1: INTRODUCTION:

In this lesson we study one of the most important algebraic concepts that of a group.
A group is a nonempty set on which a law of composition is defined such that all elements
have inverses. For example the set of all non-zero real numbers forms a group under
multiplication and the set all real members formsa group under addition. The set of all
invertible n x n matrices of real numbers isan important example in which the law of
composition is matrix multiplication. Thus the concept of a group and the axioms which
define it have a naturality about them.

0.2. GROUPS:

Let A and B be any two sets. Then Ax B = {(a, b)/ ae A, be B} is called the cartesian product
of Aand B. For example,
LetA={a,a,a}B={b, b} then

AxB={(a,b) (a,b) (a,b) @,b,) (a,b,) (a,b)}

Alsothat Ax ¢ = ¢ = ¢ xB.
Any subset of A x B is called a (binary) relation from A to B. For example, Let R = {(a,, b,),

(a, b)), (a, b,)}. Then R is a relation from Ato B. Any relation from A to itself is called a

relation on A.
A relation R on A, where A is a non-empty set, is called an equivalence relation on Aif R
satisfies

1. reflexive: (@,a) e R Vae A

2. symmetric: (a,b) e R = (b,a)e R

3. transitive: (a,b) e R and (b,c)e R =(a,c)e R
If R is an equivalence relation on A and (a, b) € R, we say that a is equivalent to b under R and
write a ~ b or aRb: in this notation (1)-(3) become
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a~a
a~b=b~a
a~bandb~c =a-~c

Let R( ~) be an equivalence relation on A. If a €A, the equivalence class of a (denoted a ) is
the class of all those elements of A that are equivalent to a; thatis,a={b € A /b~a }. Note
that any two equivalent classes are either identical or disjoint. Also note that for any acA, a =
¢ since a ~a. Also it is easy to verify that A= U, -4 a.

For any non empty set A, a mapping f: A X A —>A is called a binary operation on A.
That is, for any two elements a and b in A, there is a unique element associated in A and that
unique element will be denoted by f(a, b) or afb. Usually binary operations will be denoted by
symbols like +,+, o, *, etc. If we say that = is a binary operation on A, this means that, for any
element a and b, in this order, in A, there is another element denoted by a * b in A. For
example The usual addition ‘+> and multiplication ‘** on the set Z of integers, are binary
operations on Z The composition ‘0’ of mappings on the set of mappings of a given set into
itself, the set intersection or the set union on the set of subsets of a given set are familiar
examples of binary operations.

0.2.1. Definition: A system (A, *), where A is a non empty set and * is a binary
operation on A, is called a semigroup if a=(b*c) = (a*b) *c for all a, b, c € A (associative
law).

The set E of real numbers with usual addition ‘+’ is a semigroup and E with usual
multiplication ‘e’ is a semigroup. But & with the binary operation defined by a #* b=a—b isnota
semigroup. (Since 2—(3-1) = (2-3)-1. i.e, * is not associative)

0.2.2. Definition: Let (A, *) be a semigroup. An element e in A is called an identity
elementifa * e=a=e #aforalla e A

If a*e = a for all ac A, then e is called a right identity and if e*a=a for all a € A, then e
is called a left identity. If e is a right identity and e! is a left identity in a semigroup (A, *),
thene'=¢' =e=e.

Therefore, it follows that a semigroup can have atmost one identity. A semigroup
having identity is called a monoid. The real number 0 is the identityin (I, +) and the real
number 1 is the identity in (&, ). If &* denote the set of all positive real numbers, then (IE*, +)
is a semigroup without identity. So (& , +)and (&, «) are monoids but (E*, +) is not a monoid.

0.2.3. Definition: Let (A, *) be a semigroup with identity e. An element a in Ais said
to be invertible if there exists an element b in A such that a*b = e = b*a.

If a*b = e, then b is called a right inverse of a. If b*a = e, then b is called a left inverse of a.

If b is aright inverse of aand b! is a left inverse of the same element a that is, (a*b =e
and bl*a=e), then b = e*b = (b'*a) *b = b'* (a*b) = b'*e = bl. there exists unique b such
that a*b = e = b*a = b' and hence a is invertible. This implies that if a is invertible, there
exists unique b such that a*b = e = b*a and this unique b is called the inverse of a and is
denotedby a. For example, in the semigroup (&, +), every element is invertible (for any acR,
—a is the inverse of a). In the semigroup (&, o), O is not invertible and every non-zero element is
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invertible. In the semigroup (E* U {0}, +), the identity element O is the only invertible
element. Note that the identity element if it exists, in any semigroup is invertible.

0.2.4. Definition: A system (A, *), where A isanon empty setand * is a binary
operation on A is called a group if it satisfies the following :

(i) a= (b=c) = (a=b) =cforalla,b,c € A
(i) There exists e € A such that a*xe=a=e=a for all a € A.
(iii) To each a € A, there exists a' € A such that a*a' = e = al+a.

0.2.5. Examples:

() (R, +), (@, +)and ( Z, +) are all groups, where + is the usual addition on the set R of real
numbers, on the set @ of rational numbers and on the set Z of integers.
(ii) (&, ) is not a group, since 0 is not invertible. But if ' is the set of nonzero real numbers,

then (R, ) is a group.
(iii) Let X be any set and S(X) be the set of all bijections of X onto itself. Then (S(x), o) is a
group, where o is the composition of mappings.
(iv) For any set X, let M(X) be the set of all mappings of X into itself. Then (M(X), o) is a
semigroup with identity (where the identity mapping is the identity element), but not a group
(unless X is a single element set). An element f € M(X) has a right inverse if and only if fis a
surjection(that is, onto map) and f has a left inverse if and only if f is an injection(that is
one-one map).
(v) Let A be the set of all 2 x 2 matrices over the real numbers. Then (A, +) is a group,
where + is the usual addition of matrices. If Ais the set of all non-singularmatrices, then (A', o)
is a group, where e is the usual multiplication of matrices.
(vi) Let n be any positive integerand Z ={0, 1,2, ... .. , N-1}. Define
atbifatb<n
a+nb_{a—|—b—nifa+b2 n

Then (Z , + ) is a subgroup, which is called the additive group of integers modulo n.

0.2.6. Theorem (Cancellation Laws): Let (G, *) be a group and a, b, c € G. Then
a*bh=a*c = b=candb*a=c*a=b=c

Proof: Since aecG and G is a group, a* exists in G.

Consider a*b=a*c = a'* (a*b) =a'* (a*c)

— (al*a) *b = (a'*a) *c — e*b = e*c, where e is the identity element in G.
=hb=c

Similarly, by applying a=* from right, we get thatb*a=c*a = b =c.

The following two results are easy to prove and are left as exercises.

0.2.7. Theorem: Let (G, *) be a group. Then the following are true.
(i) The identity element in G is unique.
(i) Foranya G, the inverse of ain G isunique.



Center for Distance Education 0.4 Acharya Nagarjuna University|

0.2.8. Theorem: Let (G, *) be a group and a, b € G. Then the following hold.
(1) (@h*=a
(2) (ab)t=btat

(3) a#=x = b hasa unique solution in G.
(That is, there exists unique x €G such that a*x = b)

(4) y#=a=b has a unique solution in G.
(B)a*b=esb=a'lea=b"
(6)a*a=a«sa=e¢e.

0.2.9. Definition: A group (G, *) is said to be an abelian (commutative) group if a*=b
=b*aforalla, b e G.

Examples: (1) (K, +), (Q, +) and (£, +) are abelian groups where + is the usual addition on
the set IE of real numbers, on the set of Q of rational numbers and on the set Z if integers.

(2) Let Abe the set of all 2 x 2 non — singular matrices over the real numbers. Then(A, o) is a
non abelian group, where o is the usual multiplication of matrices.

0.3. SUBGROUPS:

If (G, *) is a group and a, beG, then we simply write ab for a*b. For simplicity, we
supress the symbol * which denotes the binary operation. Accordingly we simply say that G
is a group, when there is no amiguility about thebinary operation with which G is a group. If
G is a group with respect to more than one binary operation then we mention the operation
also.

0.3.1. Definition: Let G be a group. A nonempty subset H of G is called a subgroup of G if
H is a group relative to the binary operation in G.

For any group G the singleton {e} and G itself are subgroups of G, called trivial
subgroups. A subgroup H of G is said to be a proper subgroup if H = {e}, H = G. It is easy to
see that the identity element of a subgroup of a group must be same as that of the group.

0.3.2. Theorem: Let G be a group. Anon empty subset H of G isa subgroup of G if and only
if foranya, b € H,ab e Handa' € H.

Proof: Let H be a nonempty subset of G. If H is a subgroup of G, then obviously the implies
condition is true. Conversely suppose that H satisfies forany a, b € H,ab € H and a! € H.
Then forany a € H, a' e H. Hence,e =aate H=e € H.

Therefore H is a subgroup. Hence the result is true.

0.3.3. Theorem: Let G be a group. Anonempty subset H of G is a subgroup of G if and only if
foranya, b € H,ab* € H.

Proof: Let H be a non empty subset of G. If H is a subgroup of G, then obviously the implies
condition is true. Conversely suppose that for any a, b € H, ab* € H. Let a, b € H. Then by
our supposition, e = bb! € H. Hence b™* = ab™ € H. Therefore, ab = a(b™*)* € H. Hence H is
a subgroup of G.
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0.3.4. Theorem: Let H be a non-empty finite subset of a group G. Then H is a subgroup of
Gifandonlyifab € H foralla, b € H.

Proof: Given that H is a non-empty finite subset of G. So write H={a,, a, ..., a } for
some positive integer n. Suppose H isa subgroup of G. Now we will show that for

any a,b € H,ab € H.

Leta,b € H.Thenaa'e H,a€ Hand b € H.

—e€H aeHand beH.

—bl=ebleHandaeH.

—ab=a(b!)le H.

So for any a, b € H, we have ab € H.

Conversely suppose that ab € H forany a, b € H. Consider the set Ha ={aa /1<i

n}. By hypothesis, Ha, is a subset of H having the same number of elements as in H (for aa,

1IN

a8, =8 =8 by 0.2.6). Therefore Ha, = H and hence ai€H = Hay; that is a; = aia; for some

i. Now ea;= a; = @a: and hence e =& € H = Haj, which again imples that e = a; a; and hence

a1l =gj € H. Similarly ai_l € Hfor2<i<n thereforea’ e Hwhenevera e H. Now e € H

and for any a € H, we have a* € H. Hence H is a subgroup of G.

The above theorem fails if H is infinite. For the set Z* of positive integers is a subset
of the group (Z, +) satisfying the property that a + ba' € Z* for a, b € Z*; but Z* is not a
subgroup of (Z, +).

0.3.5. Theorem: Let G be a group. Then the intersection of any family of subgroups of G is
again a subgroup of G. The union of a family of subgroups of G may not be a subgroup of G.

Proof: It is easy to verify that the intersection of any family of subgroups is again a
subgroup. Regarding unions consider

2Z ={2alae ”Z}and 3Z={3a/ac Z}
Then 2Z and 3Z are subgroups of the group (Z, +).But 3,2 € 22U 3Z and3 -2 ¢ 2Z U 3Z.

0.3.6. Self assessment Questions:

Let H and K be a subgroup of a group G. Then prove that
1. HuK is asubgroup of G if and only if either HE K or K& H.

2. The product HK = {ab/a€H and beK} is a subgroup of G if and only if HK =
KH.

0.3.7. Definition: Let G be a group and X be a subset of G. Then the intersection of all
subgroups of G containing X is the smallest subgroup of G containing X and is denoted by
<X>. If X consists only one element say a, then we write <a > for <{a}>. <X>is called
the subgroup generated by X : a is called a generator for < a > and X is called generating set
for < X >.

0.3.8. Theorem (1): For any nonempty subset X of a group G,
<X>={a. az........ an / for eachii ; eitheraj eX or gj1eX;n >1}

(2) For any element a of a group G, <a > =4{a"/ neZ}where a" is defined inductively by
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eifn=20
a'={a" t.aifn=>0
(a)™ifn<0

Proof: (1) Let A= { ai. ax........ an / for each i ; eitherai eX or @; “e X; n>1}

It can be easily observed that xyeA whenever X,y € A.

Also (a1. az........ an)t= a;'a;l,.....aztar’. Therefore A isa subgroup of G

Clearly X < Aand if H is any subgroup of G such that X< H, then A < H. ThusA is the smallest
subgroup of G containing X and hence A = <X>.

(2) This follows from (1) and the definition of a" for any n € Z.

Forx € <a> & x = a1 &z........ an, where for each i, ai € {a} or a; ! € {a}.
S x=at,a? ... ,a"" where each €=+ 1.
= x=a™, wherem=e1+ €+ ... +ene’.

0.4. LAGRANGE’S THEOREM:

In this section, we shall prove one of the most useful theorem due to Lagrange. If G is
a finite group, then the number of elements in G is called the order of G and is denoted by
O(G). The Lagrange’s theorem states that, if H is a subgroup of a finite group G, then the
order of H divides the order of G. Before going to the proof of this, first let us have the
following.

0.4.1. Definition: Let H be a subgroup of a group G. For any a € G, letaH = {ah/h € H} and
Ha ={ha/h € H}

aH is called the left coset of H corresponding to a in G and H is called the right coset of H
correspondingto ain G.

0.4.2. Theorem: Let H be a subgroup of a group G. Then any two left (right) cosets of H in
G are either equal or disjoint. If H is finite, then the number of elements in a left (right)
coset of H is equal to O(H).

Proof: Let a, beG. Suppose aHNbH = ¢. Choose xeaH M bH. Then ahi = x = bh, forsome h;,
h, € H.
Thena?'b=h; h'eH. Nowy € aH = y=ah forsomeh € H.
=y = b(bta)h € bH

This shows thataH < bH.
Now y € bH =y = bH for some h € H.

=y =a(atb)h € aH.
This shows that bH < aH.
ThusaH = bH. That is, if aH and bH are not disjoint, then aH = bH. On the same lines, we
can prove that Ha and Hb are either equal or disjoint. The mapping h — ah is a bijection of
H onto aH and therefore when H is finite, aH is also finite and hence H and aH have the
same number of elements. Similarly we can prove the theorem for right cosets also.

0.4.3. Theorem(Lagrange’s theorem): Let H be a subgroup of a finite group G. Then
O(H) divides O(G).
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Proof: Each element a € G is in the corresponding left coset aH (Since a = at e €aH).
Therefore by theorem 0.4.2, the left cosets aH form a partition of G. That is any two left
cosets of H in G are equal or disjoint and G =U_-; aH Since G is finite, the number of left
cosets of H in G is finite. So let a H, a,H, ...., a H be all the distinct left cosets of H in G.

ThenG=aHu aHu....uaHand(aH)n (a H) # 0 fori #].

Therefore, O(G) = X, la;H| = X, 0(H) = n(OH), since | a;H | = O(H). Thus O(H) divides
O(G) and Z'}—i = n, the number of left cosets of H in G.

0.4.4. Corollary: If H is a subgroup of a finite group G, then the number of left cosets of H

in G is equal to the number of right cosets of H in G and this number is equal to E.I':_;i'
Proof: In the proof of 0.4.3, n is the number of left cosets of Hin G and n = E.I':_;i' The same

argument is valid, if we consider right cosets.

0.4.5. Definition: Let H be a subgroup of a group G. Then the index of H in G is defined as
the number of left(right) cosets of H in G and is denoted by [G:H] or i (H) if it is finite. If G

is a finite group, then [G:H] = EE—E.

This definition may be extended to infinite groups. Let H be a subgroup of a group G (finite or
infinite). If R is the set of distinct right cosets of H in G, and L is the set of distinct left cosets of
H in G, then the cardinal number R of the set B is equal to the cardinal number [£] of the set
L:ie, |R| =1L, for the map B — L given by Ha— aH is a bijection since Ha = Hb

oab'e He (@')h'e Ho a'H = b'H.

The index of H in G, denoted by [G : H] is the cardinal number of the set of distinct left
cosets of H in G. It is true that |G| = [G:H] |H|. The index of H in G may be finite with
out G or H being finite. For, consider the group (Z, +) of integers. Let n be a positive
integer and H = nZ = {na/ acZ}. Then it is easy to verify that H, 1+H, 2+H, ....., (n-1)+H
are all the distinct left cosets of H and hence H is of index n in Z.

0.4.6. Self Assessment question: Let X = {1, 2, 3}. Let S, be the group of all bijections on
X; with the binary operation composition of mappings. Define ¢: X — X as ¢(1) = 2, 4(2)
=1, ¢(3) = 3.Then ¢2 =1, where | is the identity mapping on X. Prove that H = {I, ¢}
is a subgroup Ss. Compute all the left and right cosets of H in G and observe that, though
their number is the same, they are different.

0.4.7. Theorem: Let H be a subgroup of a group G. For any a, beG, define a relationby a ~ b

< b e H. Then ~ is an equivalence relation on G whose equivalence classes are precisely the
left cosets of H in G.

Proof: Since H is a subgroup of G, H should contain the identity element of G. Forany a € G,
we have a'a = e and hence a~ a. Therefore ~is reflexive.

a~b=a'be H= b'a =(alb)’e H= b~ a. Therefore ~ is symmetric.
Alsoa~band b~c= a'band b'lc € H
—=alc=(ab)blc)e H=a~c
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hence ~ is transitive. Thus ~is an equivalence relation on G. Further, for any a € G,
a~bo albeHe b e aH
Hence aH is the equivalence class containing a with respect to the relation ~ .

0.4.8. Self assessment question: For any subgroup H of a group G, define a relation ~ on
Gbya~be ableH.

Prove that ~ is an equivalence relation on G whose equivalence classes are precisely the
right cosets of H in G.

0.5. CYCLIC GROUPS:

For any element a in group G , we have constructed the subgroup < a > generated by
ain G (see 0.3.6). <a>is called a cyclic subgroup of G.

0.5.1.Definition: A group G is called a cyclic group if there exists a€ G such that
G=<a>={a"/n e Z}.

In this case, G is said to be generated by a and a is called a generator of G. If + is the binary
operation on a group, it is conventional to write na for a™ that is

0,the identity ,if n = 0
na = (n-1)a + aifn > 0

(—n)(—a)ifn < 0
0.5.2. Examples:

(1) The group (Z, +) of integersis cyclic group, SinceZ=<1>=<-1>, Hence both 1 and -1
are generators for this cyclic group.

(2) For any positive integer n, consider the additive group Z, of integers modulo n(see 0.2.5
(vi)). Recall that Z,={ 0,1 ,2,....... ,n-1}.

Here the operation is addition modulo n, denoted by +,. Note that 1 +,1 =2, 2 +, 1 = 3,
.................. ,(N-2) +hl=n-land (N-1)+,1=0,0+,1=1,.........

By adding 1 to each element 0 <a <n-1in Z,, we are getting the next element a +, 1 in Z, and

by adding 1 to n-1 we get 0. This is the lesson for calling it a cyclic group. Z, is a cyclic
group generated by 1 whose order is n

0.5.3. Theorem: Let G be an infinite cyclic group. Then the following hold.
1) X"=ewx=eorn=0,foranyx € G.
2) Foranyx € G, x"=x"«<n=morx=e.
3) There are exactly two generators for G.

Proof: Since G is a cyclic group, there existsaeG suchthat G=<a>={a"/n € Z}.

We shall first prove that a" = e for all n « 0. If possible suppose that a" = e for some n = 0.We can
assume that n is positive (Since a" = e if and only if a" = ). Then bythe division algorithm any
integer m can be written as m = nq + r for some ¢, r € Z write 0 < r < nand hence a™ = a™*" =
aMar=(amd.(@a)=ela =a"

This imples that G = {a"/ 0 < r < n} which is a contradiction for the hypothesis that G is infinite.
Thusa"xe forall n £0.

(1) If x=eorn=0, then clearly x"=e.
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Conversely, suppose X € G and x" = e. We can write x = a™ for some m € Z. Now a™ = x"=
e and hence, by the above observation, mn = 0 so that m=0 or n = 0.Therefore x = e or n = 0.

(2) This follows from (1) and from the fact that x" = x™ if and only if x™™ = e.

(3) We have that aisa generator of G. Suppose b isanother generator of G. Then<a>=G =
<b>.

Sothata=h"and b =a™ for some integers mand n. Thenal =a=b"= (a™"=a™

and therefore by(2), mn =1 which impliesthatm=1=norm=-1=n.

From this it follows that m = 1 or -1 and hence b = a or b = a*.Thus a and a* are the only
generators of G. Also, note that a = a* and <a>=<a' >, Thus G has exactly two generators.

0.5.4. Theorem: Let G be a finite cyclic group of order n > 1. Then the following hold.

(1) If aiis a generator of G, then G ={e, a, a>,...... , a1} and n is the least positive integer such
thata" =e.

(2) For any generator a of G and for any integer m, a™ = e < n divides m.

(3) The number of generators of G is equal to ¢(n), the number of positive integers less than n
and relatively prime to n.

Proof: (1) Let a be a generator of G. Then a = e (Since O(G) > 1) and G =<a>= {a™/
me Z}.

Since G is finite and Z is infinite, we should have a™ = a' for some m < t. Thena*™ = e and t-
m is a positive integer. Let s be the smallest positive integer suchthat a° = e. Then a' « a for all 0
<izj<slandG={e a @ ... , a1} (See the discussion in the beginning of the proof of
0.5.3). Since O(G) =n, it follows that s=nand G = {e, a, a2 ......... ,a™1}.

(2) Let a be a generator of G. Then by(1), a" = e and hence (a")¥ = e for all integers g. This
implies that a™ = e whenever n divides m. On the other hand, suppose a™ = e. Then by the
division algorithm, m can be written as nq + r for some q,r € Zwith0 <r<n.Nowe =a™ =
an*" = (a")%a" = a". Since n is the last positive integer such that a" = eand sincea” =eand 0 <r <
n, it follows that r = 0 and m = ng. Thus n divides m.

(3) We shall prove that for any 0 <r < n, a" is a generator of G if and only if r is relatively
prime to n.

Let 0 <r<n. Suppose a" isa generator of G. Then<a">=G=<a>.

Hence a = (a")* for some integer s, so that a™* = e. By (2) n divides rs-1 and therefore nt = rs
—1 for some integer t so that rs — nt = 1. From this it follows that r and n are relatively prime.
Conversely, suppose that r and n are relatively prime. Then there exist integers s and t such
that rs —nt = 1 and hence a = a™ " = (a")%(a")* = (a")* which implies thata € < a" >.
Therefore<a> S<a'> S G=<a>andhence G =<a">. Sothata' is a generatorof G. Also note
that a" = & for any 0 <r, s < n. Thus the number of generators of G is equal to the number of
positive integers less than n and relatively prime to n.

0.5.5. Definition: Let G be a group and a € G. If there exists an integer nx 0 such thata" =
e, then we say that the order of a is finite. In this case, if m is the least positive integer such
that a™ = e, then m is called the order of a , written O(a). If no such integer n exists, then a is
said to be of infinite order.
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0.5.6.Corollary: Let G beagroupand a € G. Then

(i) a" =e for integer n20 < O(a) divides n.

(i) <a>isoforderm < O(a) = m.
Proof: (i) follows from 0.5.4(2), while (ii) follows from 0.5.4(1)
0.6 MODEL EXAMINATION QUESTIONS:

0.6.1. Let (G, *) be a group. Then the following are true.
(i) The identity element in G is unique.
(if) Foranya G, the inverse of ain G is unique.

0.6.2. Let G be a group. Anonempty subset H of G isa subgroup of G if and only if for any a, b
€ H,ab'eH.

0.6.3. Let H be a subgroup of a finite group G. Then O(H) divides O(G).
0.7 SUMMARY:

In this lesson we have introduced the concept of a group and certain examples of
groups have been given. Also we have defined the subgroup of a group and some
elementary properties of subgroups have been presented. Also we have introduced the
concept of a coset of a subgroup and proved Lagrange’s theorem. Further we have learnt the
concept of a cyclic group and order of an element of a group and certain important
properties of these have been proved.

0.8 TECHNICAL TERMS:

Semi group

Group

Sub group

Subgroup generated by a set
Cosets of subgroups of a set
Index of a subgroup

Cyclic groups

Order of an element of a group.

0.9 ANSWERS TO SELF ASSESSMENT QUESTIONS:

0.3.6. (1) Assume that HUK is a subgroup of G. If possible suppose that H « K and K& H.
Then there exists elements a € H-K and b € K-H. Now a, b € HUK. By assumption, ab
e HUK. If ab € H, then b = alab € H; a contradiction. On the other hand if ab € K, then
a=bb € K, again a contradiction therefore either H = K or K< H. Converse is trivial.

(2) Suppose HK = KH. HK is nonempty, since e € HK. Leta, b € HK. Thena = hy ki, b= h
ko, for some hy, h, € H and ki, k2 € K. Then ab™t = hy kg kot ht = hy y1 ho™t, where yi = kg
kot € K. Now y1 hote KH = HK. Hence y; hy'= x; y, for some x1 € H and y, € K.
Therefore ab™ = hixiy, = X2y2 where x2 = hixs € H. Hence ab® € HK. Thus HK is a
subgroup. Conversely suppose that HK is a subgroup. Let a € KH. Then a = kh for some k e
K and heH. Now a*= h*k* € HK = a € HK (Since HK is a subgroup) This implies KH <
HK. Next let b € HK. Then b € HK. This implies b! = xy for some x e H,y € K =
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b=yx!e KH. Thus HK = KH. Hence HK = KH.

0.4.6. Given that X = {1, 2, 3} and Ss3 be the group of all bijections on X; with the binary
operation composition of mappings.

ThenSs={l, ¢, v, v?, ¢y ,wd} Where ¢ : X— X definedby ¢(1)=2,4(2)=1, 4(3)=3
and w(1) =2, w (2) =3, w (3) = 1 and I is the identity mapping on X. Note that gy = y'¢, #
=l and y® = 1. First we show that H = {I, ¢} is a subgroup of Sz clearly I is the identity
element in Sz and hence in H also. Consider ¢ =1 e H .Therefore H is a subgroup of Ss.
Note that H = {I, ¢}, Hy = {v, év }, Hy? = {y?, ¢yw?}, are distinct right cosets of H in Ss
(o> =wg €S3). AndH = {I, ¢}, w H= [y, wo}, wv?H = {v? v?¢}, are distinct left
cosets of H in Sz (* gy? = gy €S3).

0.4.8. Proof is similar to that of 0.4.7.

0.10 SUGGESTED READINGS:
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2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra™, Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.
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LESSON -1

NORMAL SUBGROUPS AND QUOTIENT
GROUPS

OBJECTIVES:
The objectives of this lesson are to

% define the concept of a normal subgroup of a group.

% prove some equivalent conditions to normal subgroups.

% prove the set of all right cosets of a normal subgroup is a group; which is called the
quotient group.

STRUCTURE:

1.1 Introduction

1.2 Normal subgroups

1.3 Quotient Groups

1.4 Model examination questions

1.5 Summary

1.6 Technical terms.

1.7 Answers to self assessment questions
1.8 Suggested Readings.

1.1: INTRODUCTION:

Normal subgroups are a special kind of subgroups and these facilitate the
construction of quotient groups. In this lesson we shall introduce the concept of a normal
subgroup of a group and prove some theorems related to normal subgroups. Also we show
that the set of all right cosets of a normal subgroup of a group is a group.

1.2: NORMAL SUBGROUPS:

1.2.1. Definition: Asubgroup N of a group G is said to be a normal subgroup of G if for every
gE€G and n€N, gngtEN.

Equivalently, N is a normal subgroup of G if and only if gNg*< N, for every g € G, where
gNg™* ={gng*/n €N}

Trivially the subgroups {e} and G itself are normal subgroup of G.
1.2.2. Example: In Sg, N = {l, ¥, 12} is normal subgroup of Ss ( For Ss, See 0.4.6)

1.2.3. Theorem: Let G be a group. A subgroup N of G is a normal subgroup of G if and only if
gNg™ =N forevery g € G.

Proof: Let N be a subgroup of G. Suppose that N is a normal subgroup of G. Then for g € G,
gNg*c Nand g*N(@) 1< N (SincegteG)

= gNg*c N and g*Ng < N for any g € G.

Since g*Ng = N forany g € G, N=g(g'Ng)gc gNg = N=N=gNg* forany g € G.
Conversely suppose that N = gNg™ for any g € G. Then gNg*c N forany g € G and
hence N is a normal subgroup of G.
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1.2.4. Theorem: Let N be a subgroup of a group G. Then N is a normal subgroup of G if and
only if every left coset of N in G is a right coset of N in G.

Proof: Given that N is a subgroup of a group G. Suppose N is a normal subgroup of G. Now
we show that every left coset of N in G is a right coset of N in G. Let g € G.Then gN is a
left coset of N in G.

Now we show that gN = Ng.

Since N is a normal subgroup of G, gNg*c N and g*Ng < N.

Let x € gN = x = gn for some x € N.

Now gnglegNg'c N = gng'e N= gng'g € Ng.

= gne ENg = gn € Ng = X € Ng.

This shows that gN < Ng. Now let y € Ng =y = mg for some m € N. Since gNg*c
N, we have

gmgeEN = glmgeN = ggtmgegN = emg €gN = mg EgN = y € gN. This
shows that Ng < gN and hence gN = Ng.

Thus every left coset of N in G is a right coset of N in G

Conversely suppose that every left coset of N in G is a right coset of N in G. Now we will
show that N is a normal subgroup of G. That is, for any g € G, we will show that gngle N V¥
n €N. Let g € G.Then gN is a left coset of N in G. By our assumption, gN is a right coset
of N in G. So gN = Nh for some h€G. Nowg = ge EgN = g € Nh.

Butg=eg €ENg. .gENhNg = NhNg = ¢.

Since any two right cosets are either disjoint or equivalentand since Nh n Ng = ¢, we have Ng
=Nh. ..gN =Nh = Ng.

Now for any n €N, gng'egNg™ = Ngg? =N

= gngleN for all n EN= gNglc N.

Therefore, gNg*c NV g € G and hence N is a normal subgroup of G.

1.2.5. Self assessment question: A subgroup N of a group G is normal if and only if every
right coset of N in G is a left coset of N in G.
Note that if G is abelian, then every subgroup of G is normal.

1.2.6. Problem: If G is a group and H is a subgroup of index 2 in G, prove that H is a
normal subgroup of G.

Solution: Suppose G is a group and H is a subgroup of index 2 in G. Let a € G, if a € H, then
clearly aH = Ha. Assume a ¢ H. Since H is a subgroup of index 2, we have G =H v aH and
HnaH = ¢. Also G=HuUHaand HhaH = ¢. Thus aH = Ha, a ¢ H. Hence aH = Ha for all
a € G.Then by 1.2.4, H is a normal subgroup of G.

1.2.7. Problem: Show that the intersection of two normal subgroups of G is a normal
subgroup of G.

Solution: Let H and K be two normal subgroups of a group G. Now we will show that HN K
is a normal subgroup of G.

LetgeG. Leth EH n K. Then h €H and h € K. Since H and K are normal subgroups
of G, we have ghg? €H and ghg* € K. This implies ghg* €H ~ K. Therefore ghg* €H
N K forallh eH n K and for all g € G. Hence H n K is a normal subgroup of G.

1.2.8. Problem: If N is a normal subgroup of a group G and H is any subgroup of G, prove
that NH is a subgroup of G.
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Solution: Suppose N is a normal subgroup of a group G and H is any subgroup of G.
Now we will show that NH is a subgroup of G.

Now NH ={nh/n €N, h e H}.

By 0.3.3, it is enough if we show that xy™* € NH for any x , y € NH.

Let X,y € NH =x =nz hy, y = n2 h for some nz, nz € N and hy, h2 € H. Now h;hyt € H and
hih2teG and nzte N. Since N is a normal subgroup of G, hihza*nz*(hih2) ™ e N.

Consider xy! = n1h1(nzh2) ™ = nthihytnzt = nihahatnat(hiho by thih TeNH.

(Since nihihzIn2t(hihyt)teN and hihateH). Therefore NH is a subgroup of G.

1.2.9. Problem: If H is a subgroup of a group G and N is a normal subgroup of G, show that
H ~ N is a normal subgroup of H.

Solution: Suppose H is a subgroup of G and N is a normal subgroup of G. Now we will show
that HA N is a normal subgroup of H. Clearly H n N is a subgroup of H. Leth € H.
Now for any x € HNN, consider hxhte H (Since h, x € H). Also hxh™te N (Since N
is a normal subgroup of G and x e N). Therefore hxh™te H~N and hence HA N is a normal
subgroup of H.

1.2.10. Problem: Suppose that N and M are two normal subgroups of G and that Nm
M = (e). Show that for anyn € N and m € M, mn = nm.

Solution: Suppose that N and M are two normal subgroups of a group G such that NnM
= (e). Let neN and meM. Consider nmnm=2eM (Since M is a normal subgroup of G)
and nmn*m2eN (Since N is a normal subgroup of G). This implies that nmnm2e
NAM = (e) and so nmnm? =e.

= nmnle=m = nmnl=m = nmnin =mn

= NMe = mn = nm = mn.

Thus for any neN, meM we have mn = nm.

1.2.11. Theorem: A subgroup N of a group G is a normal subgroup of G if and only if the
product of two right cosets of N in G is again a right coset of N in G.

Proof: Let N be a subgroup of a group G. Suppose N is a normal subgroup of G.
Let a, b € G. Consider the right cosets Na and Nb. Since N is a normal subgroup of G, by
1.2.4, we have Na = aN. Now Na Nb = N(aN)b = N(Na)b = NNab = Nab ( Since N is a
subgroup of G, NN = N).

Therefore NaNb = Nab, which is right coset of N in G.

Conversely suppose that the product of two right cosets of N in G is again a right coset of N in
G.

Now we show that N is a normal subgroup of G, that is gNg*c N forany g € G. Letg € G.
By our supposition, NgNg = Na for some a € G.

Now e = egeg e NgNg* = Na = Ne = Na.

= N =Na. = N =NgNg*

Now egNg*< NgNg? =N = gNglc N

SogNgtcNforanyg e Gand hence N is a normal subgroup of G.

1.3: QUOTIENT GROUPS:

Let N be a normal subgroup of a group G and let G/N denote the collection of all
right cosets of N in G. We prove that G/N is a group in the following theorem. G/N is called the
quotient group or a factor group of G by N.
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1.3.1. Theorem: Let N be a normal subgroup of a group G. Then G/N is also a group.

Proof: Given that N is a normal subgroup of a group G. Consider G/N ={Na | aeG}

Define a binary operation « on G/N as follows.

Let Na, Nb € G/N

Define Na « Nb = Nab. Now we show that (G/N, ) is a group. First we show that « is well defined.
Let Na, Nb, Naz, Nb1 € G/N such that Na = Nb and Nai = Nbs. Then ab*e N and aibi e N.
Now aib; e N and since N is a normal subgroup of G, baib; *b e N.

Consider aai(bb1)™ = aaib*btab*(baibi*b?) € N (Since ab*e N and baib;*b*e N and N
is a subgroup of G).

This implies that Naa: = Nbb;= Na « Nai = Nb « Nby

So . is a well defined binary operation on G/N. Therefore for any Na, Nb €G/N, Na « Nb €
G/N.

Let Na, Nb, Nc € G/N.

Consider Na«(Nb«Nc) = Na «(Nbc) = Na(bc) = N(ab)ec = Nab.«.Nc=(Na.Nb).Nc.
Therefore Na «(Nb «Nc) = (Na.Nb).Nc for any Na, Nb, Nc € G/N and . is associative
on G/N. Let Na € G/N. Now Ne € G/N, where e is the identity element in G.

Consider Na « Ne = Nae = Na and Ne « Na = Nea = Na.

Therefore Ne is the identity element in G/N.

Let Na € G/N. Now a'e G and so Na*e G/N.

Consider Na « Na't = Naa = Ne and Na. Na = Naa™ = Ne.

Therefore Nat is the inverse of Na in G/N. Hence (G/N, ) is a group.

1.3.2. Theorem: If G is a finite group and N is a normal subgroup of G, then
O(G/N) = O(G)/O(N).

Proof: Suppose G is a finite group and N is a normal subgroup of G. By 0.4.4, the number
of right cosets of N in G is equal to O(G)/O(N). Since G/N is the set of all right cosets of N in
G, we have O(G/N) = O(G)/O(N).

1.4. MODEL EXAMINATION QUESTIONS:

1.4.1. Define the concept of a normal subgroup of a group. Show that a subgroup N of a group
G is normal if and only if gNg™ = N for every g € G.

1.4.2. Show that a subgroup N of a group G is a normal subgroup of G if and only if every
left coset of N in G is a right coset of N in G.

1.43.1f G is a group and H is a subgroup of index 2 in G, show that H is a normal
subgroup of G.

1.4.4. If N is a normal subgroup of a group G and H is any subgroup of G, prove that NH is
a subgroup of G.

1.4.5. If His a subgroup of a group G and N is a normal subgroup of G, show that HNN is a
normal subgroup of G.

1.4.6. Suppose N and M are two normal subgroups of a group G Such that N~M = (e). Show
that for any n € N, meM, mn = nm.

1.4.7. Show that a subgroup N of a group G is a normal subgroup of G if and only if the
product of two right cosets of N in G is again a right coset of N in G.
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1.5 SUMMARY:

In this lesson we have introduced the concept of a normal subgroup of a group and
proved some results related to normal subgroups. Also we consider the set of all right cosets
of a normal subgroup of a group and we proved that it is a group, which is called the quotient

group.
1.6 TECHNICAL TERMS:

e Normal subgroup
e Quotient group

1.7 ANSWERS TO SELF ASSESMENT QUESTIONS:

1.2.5 Given that N is a subgroup of a group G. Suppose N is a normal subgroup of G. Now
we will show that every right coset of N in G is a left coset of N in G.

Let geG. Then Ng is a right coset of N in G. Now we show that Ng = gN. Since N is a
normal subgroup of G, gNg* = N and g*Ng  N.

Lety € Ng = y=mg for somem < N.

Since g*Ng = N, we have g'mg € N = gg™*mg < gN

=>emg egN=>mgegN=YyegN.

This shows that Ngc gN.

Let x € gN = x =gn for some n € N.

Now gng'e gNglc N = gngle N = gnglg e Ng.

= gne € Ng = gn € Ng = X € Ng.

This shows that gN < Ng and hence Ng = gN. Thus every right coset of N in G is a left coset
of Nin G.

Conversely suppose that every right coset of N in G is a left coset of N in G. Now we will
show that N is a normal subgroup of G. That is for every geG we will show that gngte N
foralln e N.

Let g € G. Then Ng is aright coset of N in G. By our supposition Ng is a left coset of N in G.
So Ng = hN for some h € G.

Now g =eg € Ng =g € hN.

But g = ge € gN. Therefore g € gNnhN = gN~hN= ¢.

Since any two left cosets are either disjoint or equal and gN~hN = ¢, we have gN = hN.
Therefore gN = Ng = hN.

Now forany n € N, gng* € gNg* =Ngg™* =Ne =N.

= gngte N forall neN.

Sogngte N foralln e Nand forall g € G and hence N is a normal subgroup of G.

1.8 SUGGESTED READINGS:

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer- Verlag, New York, 1974,

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.

Dr.V. Samba Siva Rao



LESSON -2
HOMOMORPHISMS

OBJECTIVES:
Objectives of this lesson are to

define the notion of a homomorphism of groups and give certain examples.

define the concept of the kernal of a homomorphism and prove certain elementary
properties of homomorphism and their kernels.

define the notion of an isomorphism of groups and prove certain elementary properties

of isomorphisms.

prove the fundamental theorem of homomorphisms. To prove the cauchy’s and sylow’s
theorems for abelian groups.

STRUCTURE:

2.1 Introduction

2.2 Definitions and examples of homomorphisms
2.3 The kernel of a homomorphism

2.4 lsomorphisms

2.5 The fundamental theorem of homomorphisms
2.6 Cauchy’s Theoremand Sylow’s theorem

2.7 Model examination questions

2.8 Summary

2.9 Technical terms

2.10 Answers to self assessment questions

2.11 Suggested Readings

2.1: INTRODUCTION:

A relationship between groups G and G? is generally exhibited in terms of astructure
related mapping f: G — G* which are called homomorphisms. Such a mapping often gives us
information about the structure of G* from known structural properties of G or information
about the structure of G from known structural properties of G*. The study of such structure
related mappings from one algebraic structure to a similar algebraic structure is an important area

in algebra. In this lesson, we shall introduce the concept of a homomorphism explicitly and study
certain important elementary properties of homomorphisms.

2.2: DEFINITION AND EXAMPLES OF HOMOMORPHISMS:

2.2.1. Definition: Let (G, ) and (G!, *) be any two groups. A mapping f: G — G! is called a
homomorphism of groups if f(a « b) = f(a) =f(b) for all a, beG.

In other words, the image of the product a « b is equal to the product of the images
f(a) and f(b) for any elements a and b in G.

2.2.2. Example: Let G be the group of all positive real numbers under the usual
multiplication and G* be the group of all real numbers under the usual addition. Define f: G
— G' by f(a) = logza for all acG.

Then f(a.b) = logy(a.b) = logya+logob = f(a) + f(b) for all a, beG. Therefore f is a
homomaorphism of groups.
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2.2.3. Example: Let G be the group of all real numbers under the usual addition and G* be
the group of all non zero real numbers under usual multiplication.

Define f : G— G* by f(a) = 22 for all acG.
Then f (a+b) = 22"0= 222" = f(a) . f(b) for all a, b €G and hence f is a homomorphism.

2.2.4. Example: Let (G, «) and (G?, *) be any groups.

Define : f: G — G' by f(a) = e for all acG

where et is the identity element in G*

Then f(ab) = e!=e! = el = f(a) * f(b) for any a, beG and hence f is a homomorphism which is
called the trivial homomorphism.

2.2.5. Example: Consider the group Z of all integers under the usual addition and let n be an

arbitrarily fixed integer. Define f : Z — Z by f(a) = na for allac Z. Then f is a homomorphism.
2.2.6. Example: Let G'= {1, -1} where 1.1 =1, (1)(-1) =1, (-1)(1) = -1 and
(-1) (-1) =1. Then G! is a group.
Define: f: Z > Gtby
1if aiseven

f(a) = {—l if ais odd
Then f(a+b) = f(a) f(b) for all a, be Z and hence f is a homomorphism.

2.2.7. Self Assessment question:
Prove that the mapping f in 2.2.6 above is a homomorphism.

2.2.8. Example : Let n be any positive integer and Z |, be the addition group of integers modulo

n. Define f: Z — Z, by f(a) = r, where a = qn +r, 0 < r < n. Note that r is the remainder
obtained by dividing a with n. Then f is a homomorphism.

2.2.9. Self Assessment Question: Prove that f is a homomorphism in 2.2.8.

2.2.10. Example: For any group G, the map f: G — G defined by f(a) = a for all acG is a
homomorphism called the identity homomorphism.

2.2.11. Example: Let G be the group of all 2 x 2 matrices (: ;) over the real numbers for

which ad — bc = 0. Then G is a group under the usual matrix multiplication. Let G* be the group
of non-zero real numbers under the usual multiplication.

Define f: G — G* by

f((i 2)) = ad-bc, for all (: s) € G. Then f is a homomorphism.

2.2.12. Example : Let (G, ») be any group and let acG. Let (Z,+) be the group of all integers

where + is the usual addition. Define f: Z — G by f(n) = a" for all ne E, where a" is defined
inductively by
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e ifn=20
a"=4{ a*t.aifn=0
(a™) ™ ifn <0

Here a® is the inverse if a and e is the identity element in G. Then f is a
homomorphism.

In the following theorem, certain important elementary properties of
homomorphisms are derived.

2.2.13. Theorem: Let f : G — G'be a homomorphism of groups. Then the following hold.

(i) f(e) = e!, where
e and e' are the identities in G and G* respectively

(ii) f(a) = f(a?) for any acG

(i) Forany a, beG, f(a)=f(b) < f(ab ) =ele f(alb)=¢

Proof: (i) Consider
f(e) f(e) = f(e.e) = f(e) = e*. f(e)
and now, by the cancellation laws in G*, we have f(e) = e*.

(i) For any aeG, we have

f(a) f(a?) = f(aa?) = f(e) = ¢!

This implies f(a ™) is the inverse of f(a). Since the inverse of an element is unique, we have
fa™t) = f(a) ™.

(i)  Foranya, beG.
f@=f(h)= f(a)f(b?=¢
< f(a)f(bt)=¢
o f(ab™) =gl
and f(a) =f(b) < f(a)* f(b) =¢
o f(ah)f(b)=¢
o f(ath)=el

2.2.14. Theorem: Let N be a normal subgroup of a group G and G/N the quotient group.
Define f : G — G/N by f(a) = aN for any acG. Then f is a surjective (onto) homomorphism.

Proof: Given that N is a normal subgroup of a group G.

Then G/N = {aN / a eG}. Recall that the binary operation in G/N is defined as
aN.bN= (ab)N for any a, beG and hence f(a.b) = (ab)N = aN.bN = f(a).f(b). Therefore f is
a homomorphism.

Let aN € G/N . Then a e G. Now f(a) = aN and hence f is onto. Thus f is a surjective
homomorphism.

2.2.15. Self assessment question: If f: G H and g : H— K are homomorphisms of groups,
prove that gof : G —» K is also a homomorphism.

2.3: THE KERNEL OF AHOMOMORPHISM:

The identity element of G to that of GL. There in 2.2.13(i) Theorem we have learnt
that any homomorphism of G into G* carries may be several elements in G which are carried
to the identity element G*. The collection of such elements in Gis called the kernel of that
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homomorphism and this plays an important role in the study of the homomorphisms of
groups.

2.3.1. Definition: Let f: G — G! be a homomorphism of groups and e! be the identity element
of G. The Kernel of f is defined as the set Ker f = {ac G/ f (a) = '}

2.3.2. Self Assessment question: Determine the kernels of each of the homomorphisms
given in examples 2.2.2 to 2.2.12.

2.3.3. Theorem : The kernel of any homomorphismf: G — G! isanormal subgroup of G.
Proof : Let f: G — G! be a homomorphism of groups and k =Ker f = {aeG / f (a) = e'}.
where e and e! are the identity elements in G and G! respectively. By 2.2.13(i)theorem, f(e)
=e! and eeK, so that K is a nonempty subset of G.
Now a, beK = f(a) = ! and f(b) = &'
= f(ab™?) = e* (by 2.2.13 (iii))
= ableK.
Therefore K is a subgroup of G.
Also acK and xeG= f(xax™) = f(x) f(a)f(x )
= f(x)elf(x) ' = e' = xax1eK
Thus K is a normal subgroup of G.

2.3.4. Note: A converse of 2.3.3 can be started as follows: Any normal subgroup of Gis the
Kernel of some homomorphism of G into a suitable group G*. This statement is also true; for,
let N be a normal subgroup of a group G and consider the quotient group G/N and define
f: G—G/N by f(a) = aN for any acG (see 2.2.14).

Then f is a homomorphism and Ker f = {acG/f(a) =N}={ae G/aN=N}=N.

Note that N is the identity element of the quotient group G/N. Before taking up the
next important property of the Kernels of homomorphisms. Let us recall that, for any
mapping f: A — B and beB, an element acA is called an inverse image of b under f if f(a) = b.
There may be several (or not even one) inverse images of b. However, if f is a surjection of
A onto B, then any beB has at least inverse image in A under f. In the following we describe
an important property of Kernels of surjective homomorphisms.

2.3.5. Theorem: Let f be a homomorphism of G onto G* (i.e, f: G — G! is a surjective
homomorphism) and y € G. Let K be the Kernel of f. Then the set of all inverse images of
y in G under f is equal to the coset aK, where a is any inverse image of y.

Proof : Given that f is a homomorphism of G onto G* and yeG!. Let a be an inverse image
of y in G under f; i.e, acG such that f(a) = y. Then for any xeG, xeak < x = ak for some
keK.

salx=keK o f(alx) =¢l

o fl@hf(x) = el < f(a) ! f(x) = el

< f(x)=fa)=y (by 2.2.13 (iii))

Thus ak = {xeG/f(x) = y}.

2.4: ISOMORPHISMS:

Consider the group G = {1,-1} under the usual multiplication and the group Z , ={0, 1}
under the addition modulo 2. These two groups look like similar, except for the labeling or
naming of the elements. The identity in G is 1 while in Z, it is 0. Also the other element —1 in
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G has the property that (-1)(-1) = 1 while the element 1 in Z,has a similar property that 1+1
= 0. In other words, there is a bijection f : G — Z» which is a homomorphism too, such an f is
defined by f(1) =0 ( which is a necessary property of homomorphisms) and f(-1) =1. Let us
formalise this idea in the following.

2.4.1. Definition: A homomorphism f: G — G! is called an isomorphism if f is a bijection
(that is, f is both one-one and onto). Two groups G and G* are said to beisomorphic and is
expressed as G =~ G! if these is an isomorphism f: G — G

2.4.2. Theorem: A homomorphism f: G — Glis an injection if and only if Ker f = {e},
where e is the identity in G.

Proof: Let f: G — G* be a homomorphism of groups. Suppose that f is an injection.

Recall that Ker f = {ae G/ f (a) = e}

Since it is always true that f(e) = e!, we have e e Kerf. On the other hand, a € Kerf =
f(a)=e! = f(e)

= a =e (since f is one - one)

Thus Ker f={e}

Conversely suppose that ker f = {e}. Then, for any elements a and b in G, f(a) = f(b)

= f(ab™?) = e* (by 2.2.13(iii) )

=abl eKerf={e} = abl=e = a=h.

Thus f is an injection.

Injective homomorphisms are usually called monomorphisms and surjective ho-
momorphisms are called epimorphisms. An isomorphism is both a monomorphism and an
epimorphism. A homomorphism f: G — G! is an isomorphism if and only if Kerf = {e} and
every element of G! has an (unique) inverse image in G.

2.4.3. Theorem: (i) The inverse of an isomorphism is also an isomorphism
(i) If f: G > Hand g: H — K are isomorphisms, then so is gof.

Proof: (i) Let f : G— H be an isomorphism. Then f is a bijective homomorphism.

Since fis a bijection, the inverse map f! : H — G exists such that fof ! and f1of are identity
mappings of H and G respectively. Also f is clearly a bijection.

Further, for any x, yeH, we have

f(F(xy)) = xy = f(F1x).f (f1y) = f(F1(x). f1(y)) and since f is an injection,

we have 1 (xy) = f1(x).f(y)

Thus f! : H—G is a homomorphism also and f is an isomorphism.

(ii) Follows from the facts that the composition of two bijections (homomorphisms) is
also a bijection ( homomorphism respectively).

2.4.4. Self Assessment Question: Let G, H and K be groups. Then prove that the following
() =6
(i) G= H=H =G
(i) G=Hand H=K =G =K

2.5: THE FUNDAMENTAL THEOREM OF HOMOMORPHISMS:

We shall prove a very crucial and fundamental theorem which states that any
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homomorphic image of a group G is isomorphic to a quotient of G. In theorem 2.2.14, we
have already proved that any quotient G/N of a group G is a homomorphic image of G. We
prove a converse of this in the following.

2.5.1. Theorem (Fundamental theorem of Homomorphisms): Let f: G— G! be a
surjective homomorphism of groups. Then G/kerf =G,

Proof : Given that f: G— Glis a surjective homomorphism of groups. Let K = Ker f. Wehave
already proved that K is a normal subgroup of G (see 2.3.3). Now define g: G/K — G! by
g(aK) = f(a).

for any aK € G/K with a € G.

Let us recall that, for different elements a and b, aK and bK may be equal. On theface of it,
g(aK) looks like depending on a. We shall first prove that g(aK) depends on the coset aK but
note on the element a.

For any a, beG, aK =bK

< abteK =Kerf

< f(a) = f(b) (by 2.2.13 (iii))

This proves that g is well defined and g is an injection also.

Further for any a, b € G,

g(ak.bk) = g((ab) K) = f(ab) = f(a).f(b) = g(aK).g(bK)

and hence g is a homomorphism and g is an injection also.

Now, we will show that g is onto

Let x € G*. Since f is surjective, x = f(a) for some a € G.

Now aK € G/K and g(aK) = f(a) = x

Therefore g is surjective (onto).

Thus g is an isomorphism of G/K onto G! and G/K % G,

The above theorem is actually an important tool in the development of thestructure
theory of groups. Before going to certain applications of the fundamental theorem of
homomorphisms, let us prove the following.

2.5.2. Theorem: Letf: G— G*beasurjective homomorphismof groups with Kernel K.
(i) If H' is a subgroup of G' and H = f{(H') = {aG /f (a) e H'}, then H is a subgroup
of G containing K.
(i) The correspondence H '—f'(H ') is a one-to-one correspondence between the
subgroups of G* and the subgroups of G containing K.
(iii) H'is a normal subgroup of G if and only if f1(H) is a normal subgroup of G.

Proof: Given that f : G—G1is a surjective homomorphism of groups, with kernel K.
(i) Let H* is a subgroup of G' and H = fi(HY) = {aeG /f (@) e HY}

For any aeK, we have f(a) = e!eH! and hence acH.

Therefore K< H and in particular H = ¢

Also a, beH = f(a),f(b) eH!

= f(a).f(b) teH! ( Since H! is a subgroup of G?)

= f(a).f(b?) eH!= f(ab!) eH! = ableH

Thus H is a subgroup of G containing K.

(ii) Let S* and T* be subgroups of G! such that f1(SY) < f1(TY)
Then xeS'= f(a) =x for some aeG (since f is onto)
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= aef!(sY) < (T = f(a) eT'= xeT*

Therefore, S' < T Thus S* = T whenever f4(S!) = f*(T%), which implies that the
correspondence H! —s f1(HY), is one-one.

To prove that this is onto also, let S be a subgroup of G containing K. Put H! = {f(a)/acS}.
Then clearly H! is a subgroup of Gt and S < f*(HY)

Further, bef(H')= f(b) eH!= f(b) = f(a) for some aeS.

= f(ba!) = e' and ae$S

—ba! eKerf=Kc S and aeS

=b=(ba?)aeS

Therefore, f1(HY) < S and hence f1(HY)=S

Thus H! — f1(H') is a one-to-one correspondence between the subgroups of G and the
subgroups of G containing K.

(iii) Suppose H* is a normal subgroup of G*.Then xyx eH! for all yeH! and x € G.
Now, for any beG and aef*(H'), we have f(a) eH* and f(b) €G! and hence f(bab™) = f(b)
f(a)f(b1) = f(b)f(a)f(b) *eH!?

So that bab™? ef*(HY)

Thus f1(HY) is a normal subgroup of G.

Conversely suppose that f1(H!) is a normal subgroup of G, where H! is a
subgroup of G Let yeH! and xeG!. Since f is onto, we can choose a and b in G such that
y = f(a) and x = f(b). Then aef*(H') and beG. Since f1(HY) is a normal subgroup of G, we
have bab e f(H) and therefore f(bab™) eH*

Now xyx* = f(b)f(a)f(b)* = f(bab™!) e H™.
Thus H* is a normal sub group of G*.

2.5.3. Theorem: Let f: G — G! be a surjective homomorphism with kernel K. Let N'be a
normal subgroup of Gtand N = f1(NY).
Then G/N = GY Nt and equivalently G/N = (G/K)/(N/K).

Proof: Given that f. G — G! be a surjective homomorphism with kernel K and N?! is
a normal subgroup of G* and N = f1(N%).
Define g : G — GY/N! by g(a) = f(a)N* for all acG.
Then, for any a, beG, we have g(ab) = f(ab)N*= f(a) f(b) N* ( since f is a homomorphism)
= f(a) N*. f(b) N*
=g(a) g(b)
Therefore g is a homomorphism.Now we show that g is onto.
Let xe GYN! = x =zN! for some zeG!
Since zeG!and since f is onto, z = f(a) for some aeG.
Now x = zN! = f(a)N*! = g(a)
Therefore g is onto hence g : G — GY/N! is a surjective homomorphism. By the fundamental
theorem of homomorphisms (2.5.1),
Glker g = G/ N!

But Kerg = {aeG / g(a) = N1, the identity in G/ Nl}
= {aeG/f(a)N' = N}
= {acG/f(@eN}
=f1(NY)
=N
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Thus we have G/N = G/ N?

Also, if we restrict f to N, then it becomes a surjective homomorphism of N onto N* whose
kernel is K again and hence by the fundamental theorem of homomorphisms (2.5.1).

N'= N/K and G*= G/K

Thus G/N = GY/ N = (G/K)/(N/K).

2.5.4. Self Assessment Question: Let N and K be normal subgroup of a group G suchthat
K< N. Then prove that N/K is a normal subgroup of G/K and that (G/K)/(N/K) = G/N.

2.5.5. Self Assessment question: Let N be a normal subgroup of a group G and K be any
subgroup of G. Then prove that KN is a subgroup of G, K n N is a normal subgroup of K and
K/ K Nz KN/N.

2.6: CAUCHY’S THEOREM AND SYLOW’S THEOREM:

In the previous section, we have learnt that the homomorphic images of a given group
G coincide (upto isomorphism) with the quotient G/N of G, where N is a normal subgroup of G.
A group is said to be simple if it has no nontrivial homomorphic images or equivalently, if it
has no nontrivial normal subgroups. When we construct the quotient group G/N, where N is a
normal subgroup of G,knowing the structure of G/N help us in knowing the structure of G upto
N”. We can ascertain certain information about G by looking at those of a quotient of G.Those
ideas are applied in proving the following two theorems. In fact, later we prove those results in
a much more several set up and in easier way. However, the proofs of these two results are
important on their own in view of the use of several group theoritic concepts and illustrations
in proving these.

2.6.1. Theorem ( Cauchy’s Theorem for abelian groups): Let G be a finite abelian group

and p is a prime number such that p divides O(G). Then G has an element a such that a = e
andaP=e.

Proof: We shall use induction on O(G). Since p divides O(G), we have p < O(G). If O(G) = p,
then we can take any element a # e in G, for, by Lagrange’s theorem, O(a) = p and hence a° = e.
Next suppose that O(G) > p and assume that the theorem is true for all abelian groups of order
less than O(G). Choose an element b = e in G. Let n be the order of b; that is, n is the least
positive integer such that b" = e. We shall distinguish two cases.

Case (i) : Suppose p divides n. Then b®/® ¢ and (b®/P)P =e and hence b®/* is the required
element a.

Case (ii): Suppose p does not divide n. Let H be the subgroup generated by b in G. Then
O(H) = n > 1. Since G is an abelian group, H is a normal subgroup of Gand hence we can
consider the quotient group G/H. Also, we have

O(G) = O(H). O(G/H) = n.O(G/H).

Since p divides order of G and p does not divide n, it follows that p divides O(G/H).
Also G/H is a group of order less than O(G)

(Since n > 1 and O(G/H) = O(G)/n). Therefore, by the induction hypothesis, these exists a
non-identity element X in G/H such that XP = H, the identity element in G/H. X € G/H implies
that X = xH for some xeG. Then X°®=(xH)°® = x°®, H = H.Since O(X) = p in G/H, we get that p
divides O(x). Now, as in case (i), xX°®" is the required element a in G.
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2.6.2. Theorem (Sylow’s theorem for abelian groups):
Let G be a finite abelian group, p a prime number and r a non-negitive integer such
that p" divides O(G) and p"* does not divide O(G). Then G has a subgroup of order p".

Proof: Given that G is a finite abelian group, p a prime number and r a non- negative
integer such that p’ divides O(G) and p"** does not divide O(G).

If r =0, then p'=1 and {e} is the subgroup of order p". Suppose r > 0. Then p divides O(G)
and hence by the Cauchy’s theorem (2.6.1), there exists an element a = e in G such that a® =
e.

n
Now, consider H = {x cG/xP -e for some ne E+}.

Then H has at least two elements, namely e and a. We shall prove that H is a subgroup of
G.

p" p"
Let x,yeH. Thenx" =eand y" =e for some n,me Z+,

={9")’

n+m

n+m n+m -1
=% (yp ] =e=>xylteH.

Therefore H is a subgroup of G. Next, we shall prove that p is the only prime dividing O(H).
If g is a prime number dividing O(H) and q = p, then again by 2.6.1, there exists x = e inH

n
such that x%=e. Since xeH, xP" ~ eforsomen e Z+. Since q= p,qandp" are relatively prime
and hence these exist integers t and s such that tq + sp" =1 and now consider

" n t n)s . . .. . .
x=xl=xH T = (xq) ( xP ) = e, which is a contradiction, since by our choice x = e .
Therefore no prime other than p divides O(H). This implies that o(H) = p™ for some m>0.

Since O(H) divides O(G) ( by the Lagrange’s theorem) and since p" ** does not divide O(G),
it follows that 0 <m<r.

Since aeH and a = e, O(H) > 1 and hence m > 0.

Finally we prove that m = r and conclude that H is the required subgroup of G. On the
contrary, suppose m < r. Consider the quotient group G/H (note that, since G is abelian, H is a
normal subgroup of G).

Then p" divides O(G) = O(G/H) O(H) = O(G/H).p™; so that p’'~ ™ divides o(G/H) and r —m> 0.
Thus p divides O(G/H). Again by the Cauchy’s theorem 2.6.1, there exists an element xH in

G/H such that. xH #H and (xH)? = H.
n
Then xPH = H, and hence x°<H so that (xp]p = ¢ for some n and therefore 4 P" o e Which

implies that xeH and xH = H, which is a contradiction to the choice of x. Thus m = r and
O(H) =p'

Later, we extend both the above theorems for arbitrary finite groups. However, if G is a finite
abelian group. Then the subgroup H described in theorem 2.6.2 is unique. This is proved in
the following.

2.6.3. Theorem: Let G be a finite abelian group, p a prime and r a non-negative integer such
that p" divides O(G) and p™* does not divide O(G). Then G has a unique subgroup of order
r

p.

Proof : The theorem is trivial for r = 0. Therefore, we can suppose that r > 0. We have
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proved the existence ofa subgroup of order p"inthe Sylow’s theorem (2.6.2).
So we shall now prove the uniqueness. Let H and K be any subgroups of order p" in G. Since G
is abelian, HK=KH and hence HK is a subgroup of G. Also

_O(H)O(K) _ p'p"

O(HK) = O(HAK)  O(H K)

Therefore O(HK) = p® for some positive integer s. By the Lagrange’s theorem,p® divides
O(G). Since H < HK, p" = O(H) < O(HK) = p® and hence r <s. But since p" * ! does not divide
O(G), s can not be strictly greater than r. That is r = s which implies that O(H) = O(HK) and
hence H = HK. This yields that k = H. Since H and K are of the same order, we get that H = K.

The above theorem fails for non abelian groups, that is, if G is a finite non abelian
group such that p|O(G) and p™* O(G) then G may possess more than one subgroups of order
p". The following illustrates this.

2.6.4. Example: Consider the group Ss, the symmetric group of degree 3. Then Sz is a non
abelian group of order 3! =6. Take p =2 and r=1. Then plO(Ss) and p™t O(Ss).
For any transposition & in S, {id, o} is a subgroup of order p’ in S3. There are three distinct
transpositions in Sz, namely (1, 2), (2, 3) and (3, 1) and hence these are three distinct
subgroups each of order 2, in Sz

2.6.5. Self Assessment Question: How many subgroups are there in Sz, each of order 3?

Later, we shall prove that any two subgroups H and K of order p', where p"** does
not divide O(G), must be conjugate to each other, in the sense that H = aKa™ for some
aeG, even though they may not be equal

2.6.6. Self Assessment Question: Prove that any two subgroups of order 2 in Sz are
conjugate to each other .

2.7. MODEL EXAMINATION QUESTIONS:

2.7.1. Define the concepts of a homomorphism of groups and its Kernel. Prove that a
homomorphism f: G — G is injective if and only if Ker f = {e}

2.7.2. State and prove the Fundamental theorem of homomorphisms.
2.7.3. State and prove the Cauchy’s theorem for finite abelian groups.

2.7.4. State and prove the Sylow’s theorem for finite abelian groups.

2.7.5. If G is a finite abelian group, p is a prime number and r is a non negitive integer. such that
p|O(G) and p™ O(G), then prove that there can be atmost one subgroup of order p" in G. Is
this true for non abelian groups ? Justify your answer.

2.8 SUMMARY::

In this lesson, we have learnt the concepts of a homomorphism, isomorphism and
Kernel of a homomorphism and proved certain important properties of these. We have proved
three very important theorems, namely, the fundamental theorem of homomorphisms,
Cauchy’s theorem for finite abelian groups and Sylow’s theorem for finite abelian groups.
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2.9 TECHNICAL TERMS:

Homomorphism.

Isomorphism. (bijective homomorphism)
Monomorphism. (injective homomorphism)
Epimorphism. (surjective homomorphism)

Kernel of a homomorphism.
Homomorphic image.

Fundamental theorem of homomorphism.
Cauchy’s Theorem.

Sylow’s Theorem.

2.10 ANSWERS TO SELF ASSESSMENT QUESTIONS:

2.2.3. The identity in G is 1 and hence
kerf={aecG/ f(a)=1}
={fackR/2? =1
= {0}

2.2.4. Every element of G is mapped to e! and hence ker f= G

2.2.5. f: Z—> T isdefined as f(a) = na
for any ae Z. If n = 0, then f is the trivial homomorphism and ker f = Z.
Ifn=0, then ker f = {ac Z /na =0} = {0}.

2.2.6. kerf={a eZ/f(a) =1}
= {ae Z /a is even} = The set of even integers.

2.2.7: Let a, be Z. We have prove that f(a+b) = f(a) f(b). If a and b are both even, then so is
a+b and f(a+b) =1, f(a)=1=f(b). If both a and b are odd then a+b is even and

f(a+b) = 1 = (-1)(-1) = f(a).f(b)

Similar argument can be made when one of a and b is even and the other is odd.

2.2.8. O is the identity in Z,, and hence
ker f = {ac Z /a=qn for some qe Z } =nZ.

2.2.9: Leta, be Z. Write a = qin +r; and b = gan+rz, where g1, g2, r, 2 € £Z,0< ri<nand 0
< r2<n. Then f(a) = ry and f(b)= r.. Also we have 0 < ri+ r2 < 2n. We shall distinguish two
cases

Case (i): Suppose ri+ r2<n.

Thena+b =(q1+ gz2)n + (r1+r2) and

f(a+b) = ri+r2 =11+, 12 = f(a) +n f(b) where +, is the addition modulo n.

Case (ii) : Suppose ri+r2 > n. Then

a+b = (g1+ g2+1)n + (r1+ r-n) and 0 < ri+ r-n < n and hence f(a+bh) = ri+ ro-n
=11+ 12 =f(@) +n f(b)

Thus f is a homomorphism.

2.2.10. Ker f = {e}
2.2.11. Ker f= {(S g]md —be =1}
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2.2.12. ker f = {ne Z /a"=e} = {0} if a is of infinite order; that is a" = e for all n= 0 and
ker f = nZ, if a is of order n; that is n is the smallest positive integer such that a"= e.

2.2.15: Forany a,b € G,

gof(ab) = g(f(ab))
= g(f(a)f(b))  (since fis a homomorphism)
= g(f(a) g(f(b)) (since g is a homomorphism)
= (gof) (a) (gof) (b)

Therefore, gof is a homomorphism.

2.3.2: (2.2.2) The identity in G* is 0 and hence

Kerf={aeG/ f(a)=0}

={facR/a>0and logra =0}={1}

Therefore, ker f={1}

2.4.4. (i) The identity mapping of G onto G is an isomorphism and hence G = G

(ii) If G=H, then there exists an isomorphism f. G — H and, in this case, f: H — G is an
isomorphism (2.4.3(i)) and hence H = G.

(iii) This follows from 2.4.3(ii)

2.5.4. Let f: GG/K be defined by f(a) = aK for any acG. Then f(N) = N/K which is a
normal subgroup of G/K and by 2.5.3 theorem, G/N = (G/K)/(N/K).

2.5.5. Since N is a normal subgroup G, NK = KN and hence KN is a subgroup of G. If x € K
and ac K n N then xax* € K n N and hence K n N is a normal subgroup of K. Define
f: K — KN/N by f(a) = aN. Then f is an epimorphism and ker f = K n N and by 2.5.1
Theorem, K/Ker f= KN/N. Hence K/ K n N = KN/N.

2.6.5. Let « be the 3 -cycle (123) in Ss. Then A = (132 and o =id {id, a, &} is the only
subgroup of order 3 in Ss.

2.6.6. There are three subgroups , each of order 2 in Sz and these are
H: = {id,(1,2)}; Hz = {id,(2,3)} and H3 ={id ,(3,1)}.

Let p=(1,2), y=(2,3) and 5=(3,1), Then yH; y = Hs,

ﬂHzﬂ'l =Hs; and SH15™" = Hz.
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LESSON - 3
AUTOMORPHISMS

OBJECTIVES:
Objectives of this lesson are to

X/
X4

L)

define the notion of an automorphism and give certain examples.

prove that the set of all automorphisms of a group G is it self a group under the
composition of mappings.

% define the concept of an inner automorphism and prove that the group of inner
automorphisms of a group G is isomorphic to the quotient group G/ Z(G ) where Z(G) is

the centre of G.
% determine all the automorphisms of a given cyclic group.

X/
X4

L)

X3

STRUCTURE:

3.1 Introduction

3.2 The group of automorphisms

3.3 Inner automorphisms.

3.4 Automorphisms of a cyclic group
3.5 Model examination questions

3.6 Summary

3.7 Technical terms

3.8 Answers to self assessment questions
3.9 Suggested Readings

3.1: INTRODUCTION:

In the previous lesson, we have learnt the concepts of a homomorphism and a
bijective homomorphism, which is called an isomorphism. Whenan isomorphism is from a
group G onto itself, it is called an automorphism of G. Automorphisms play an important role
in the structure theory of groups. For anygroup G, the automorphisms of G form a group
under the composition of mappings. On several occations, the structure of the group of
automorphisms of G reveals that of the group G itself. In particular, when G is an infinite
cyclic group, then there are eaxctly two automorphisms and when G is a finite cyclic group
of order n, then there are exactly ¢ (") number of automorphisms of G which is also equal
to the number of generators of G. In this lesson, we shall havea detailed discussion on these
topics.

3.2: THE GROUP OF AUTOMORPHISMS:

Isomorphisms of a group G onto itself are called automorphisms. In the following
theorem we shall prove that the automorphisms of a given group form a group again. First,
let us have the formal definition of an automorphism.

3.2.1. Definition : Let G be a group. Any bijective homomorphism of G onto G itself is called
an automorphism of G. The set of all automorphisms of G will be denoted by Aut(G).

Note that the homomorphism given in example 2.2.5 is injective but not surjective
and that given in example 2.2.8 is surjective but not injective. This says that surjective
(onto) and injectivity (one-one) are both necessary for a homomorphism to become an
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isomorphism or an automorphism.

3.2.2. Theorem: Let G be a group. Then the set Aut(G) of all automorphisms of G forms a
group under the composition of mappings.

Proof : Let f, g € Aut(G). Then f and g are automorphisms of G and so f and g are
isomorphism of G. Hence fog is an isomorphism and fog is an automorphism of G. Thus, the
composition of mappings is a binary operation on the set Aut(G). Clearly, we have fo(goh) =
(fog)oh for all f, g, h € Aut(G). Also, the identity mapping i, defined by ic (a) = a for all a
€ G, is an automorphism of G and hence ic € Aut(G) and for any f€ Aut(G). icof = f= fo
ic. Therefore ig is the identity element of Aut(G). Further, for any f € Aut(G), f being a
bijection, its inverse fexists and f is also an automorphism (2.2.3(1)). Since fof ! = ic = fof,
it follows that f is the inverse of f in Aut(G). Thus Aut(G) is a group under the composition
of mappings.

Every element of a group G has an inverse in G and hence a = a* can be treated as a
function of G into G. If al=blfor any a, b eG, thena= (e =(b)'=b
and for anyy € G,y'€ G and (y!)* =y. That is the mapping a — ais a homomorphism
and hence an automorphism of G.

3.2.3. Self Assessment Question: Prove that the following are equivalent for any group G.
() Gisabelian
(i) Themappingf:G — G, defined by f(a)=a foranya € G isan automorphism of G

(iii) (ab)* =ab ! foranya, b e G
(iv) (ab)?> = a%b? foranya, be G

(v) There exist three consecutive integers n such that (ab)" = a"b" for alla, b€ G

3.2.4. Theorem: Let G be a group and a € G. Let f be an automorphism of G. Theno(f(a)) =
o(a).

Proof : Let f be an automorphism of G and aEG. If a is of order zero. Then a" = e for any positive
integer n and hence f(a)"=f(a") = f(e) =e. (Since f is an automorphism and a"=e)

So that f(a) is also of order zero. Now, suppose o(a) > o and let o(a) = n. Then n isthe least
positive integer such that a" = e.

We have f(a)"=f(a") =f(e) = e

And, for any positive integer m < n, a" # e and hence f(a)" = f(@a") = f(e) =e (sincef is an
automorphism) Thus n is the least positive integer such that f(a)"=e. Therefore, O(f(a)) = O(a).

3.2.5. Self Assessment question: If f: G — G! is an isomorphism of groups and a € G, then
prove that the orders of a and f(a) in G and G! respectively are same.

3.3: INNER AUTOMORPHISMS:

In this section we shall introduce a special type of automorphisms knownas inner
automorphisms. With each element a in a group G, we shall associate an automorphism of G
as defined in the following.
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3.3.1. Theorem: Let G be agroup and a € G. Definef f, : G — G by f.(x) = axa* for any x €
G. Then f, is an automorphism of G.

Proof: Let Gbeagroupanda € G.

Define f,: G— G as f,(x) = axa ™ for any xG.

Now we show that f, is an automorphism of G.

For any x, yEG, we have f, (xy)=a(xy)a™ = (axa*)(aya ™) = f, (x) f, (¥).

And hence f, is a homomorphism.

Also, f, (x) = f,(y) = axa "= aya "= x =y ( By the cancellation laws).
Therefore f, is one-one. Finally to prove that f, is a surjection. Let us take yeG.
Then a'yaeG and f, (a'ya) = a(a'ya)a ' =y. Therefore f_ is a surjection also.
Thus f, is an isomorphism of G onto G; that is, f, is an automorphism of G.

Note that the automorphism defined in the above theorem is called an inner
automorphism of G and we denote the set of all inner automorphisms of G by I(G).

3.3.2. Definition: For any group G, the centre of G is defined asthe set Z (G) ={a€ G/ ax =
xa for all xeG}.

3.3.3. Self Assessment Question: Prove that the centre Z(G) of a group G is a normal
subgroup of G.

3.3.4. Theorem: For any group G, the set I(G) of inner automorphisms of G is a group under
the composition of mappings and G/ Z(G) = 1(G) where Z(G) is the centre of G.

Proof: Let G be a group and Aut(G) be the set of all automorphisms of G. We know that
Aut(G) is a group under the composition of mappings (see 3.2.2). We shall prove that the set
I(G) of all inner automorphisms of G is a subgroup of Aut(G). For any a € G, we have f, €
1(G).
I1E fa), f, € 1(G) with a, b € G, then (f, 0 fi, ) (x) = f,(bxb™") =a(bxb ™) a'= (a b) x (ab) = f,,(X)
fo (X) = exe ™t = x = id(x)
Hence f,of,) = f,,, and f, = id, the identity map.
Therefore f, 0 f,-: = f,_-: =fo = f,-:_ =f_-: 0 faand hence f, = f-:.
Now fa 0 fo'=fa 0 f,-2=f,,-2 € | (G).
Thus I(G) is a subgroup of Aut(G)
Now, let us define «: G — I(G) by «(a) = f, for any a€G.
Then « (ab) = f, =f,0f = a (a) a (b) for any a, bEG. Therefore « is a homomorphism. Also,
clearly aris a surjection (since any element of I(G) is of the from f, for some a€G)
Now by the fundamental theorem of homomorphisms (2.5.1),
we have G/Ker a = I(G)
Let us compute Ker « . By the definition of the kernel,
we have Ker a« ={aeCG/x (a) = identity in I(G)}
= {aeG/fy(x) = x for all xeG}
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= {aeG/axa* = x for all xeG}
= {aeGl/ax = xa for all xeG} = Z(G)

Thus G/ Z(G) = I(G).

3.3.5. Self Assessment Question : For any group G, prove the following.
(i) G is abelian if and only if I(G) is trivial

(i) I(G) is a normal subgroup of Aut(G).

3.4: AUTOMORPHISMS OF A CYCLIC GROUP:

Let us recall that a group G is said to be cyclic if there exists an element a generating
G, thatis, G=<a>=4{a"n €Z }. In this case, a is called a generator of G.

There can be more than one generator of a group G. For example 1 and —1are both
generators of the group Z of integers under addition. In this section we shall determine all the
automorphisms of a cyclic group and prove that there is a one-to-one correspondence between
the automorphisms of a cyclic group G and the generators of G. Let us begin with the
following :

3.4.1. Theorem: Let G be a group, f an automorphism of G and a€ G. Then a is a
generator of G if and only if f(a) is a generator of G.

Proof : Given that G is a group and f is an automorphism of G and aeG. Suppose a is a
generator of G. ThenG=<a>={a"/neZ }.

Now f is an automorphism and in particular, f is a surjection, so that f(G) = G.

Now we have G = f(G)= {f(a)"/n €EZ }= < f(a)>

Therefore f(a) is a generator of G.

Conversely suppose that f(a) is a generator of G. Since f is an automorphism, fis also an
automorphism of G.

Since ! is an automorphism and since f(a) is a generator of G, we have f(f(a))is a
generator of G and so a is a generator of G.

In the following, we shall determine all the automorphisms of a cyclic group. First,
let us recall that for any integer n > 1, the set

Un = {re Z*/r <n and r and n are relatively prime} is a group under multiplication modulo n.
For example,

U= {1}

Us={1,2}

Us={1,3}

Us={1,2,3,4}

U ={1,57,11}

First, let us take up the case of a finite cyclic group.

3.4.2. Self Assessment Question: Determine the sets Uzo and Uss.

3.4.3. Theorem: Let G be a finite cyclic group of ordern>1and G=<a>. Then
(1) An element heG is a generator of G if and only if b = a" for some reU, (i.e, 0<r<nandr

is relatively prime to n)
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(2) Aut(G) = U,
Proof: Let G be a finite cyclic group of ordern>1and G=<a>

Let bE€G. Suppose b = a' for some r €U, . Since r is relatively prime to n, these exist integers
a and gsuch that or + gn =1 and hence

a=a**tE = (a")* (a™)?=b" (Sincea"=eand b=a)

Since G = < a >, every element of G is of the form a™, m € Z and hence it follows that any
element of G is of the form b*, k € Z. Thus G = <b> and hence b is a generator of G.

Conversely suppose that b is a generator of G. Since G =<a > and o(G)=n, we have
b =a" for some 0 <r <n. Also a € G = <b> and hence a = b® for some integer s. Now
al™ =a.(a)° = ab =e (since a = b%) and hence o(a) divides 1-rs. Since o(a) = n, it follows that
nt =1-rs or 1= nt + rs, which implies that r is relatively prime to n; that is, r € U, and b = a".

2) Now we show that Aut (G) = U,,.
For any reU,,, define g, : G — G by g,(x) = X' for all xeG
Then clearly g, is a homomorphism. We shall verify that g, is a bijection, so that it becomes

an automorphism of G. Since r is relatively prime to n, there exist integers s and t such that
rs + nt=1.

Now for any x, YEG,

gr(x) = g(y)= X=y'= (x)°= (y)° and

(x")t=e = (y")' = X =yt — x=y (since rs + nt = 1)

Therefore g, is a injection. Further, by (1) above,

G =<a">and we have

YEG = y=(a")™ for some integer m.

=y =@")" =g, (@") and a"€G.

Therefore g, is a surjection and hence g, is an automorphism of G.
Now, define the mapping y : U, — Aut(G) by

w (1) =g, forany reU,. First we show that y is a homomorphism

Note that o(a) = n and for any m€ Z, a" = e if and only if n divides m. For any r, s€ U,,, let
rs = t, where t is the remainder obtained by dividing the usual product rs with n; i.e, if
rs=qn +t, 0 <t <n, then rs = t. Also note that x"= e for all xeG.

Now, (g, 0 g¢ )(X) = g, (gg (X)) = (x9)"=x"*=xT"'= (x")% x' = e.x'= x'= g ¢ (x) for all xEG.
Therefore g, 0 g; = g, and hence y is a homomorphism of U, into Aut(G).

Now we show that y is an injection.

For any r, s € U, consider w (1) = w(s) = g, = g
=0,(@)=gs@) =>a'=a’=a"’=e

=r-s=0 (Since r-s <nand o(a) = n)

=>r=s

Therefore y is an injection.

No we show that y is a surjection.
Let fEAut(G). Then by 2.4.1 Theorem, f(a) is a generator of G. BY (1), f(a) = a'for some
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reUn, If x = a"€G, then f(x) = f(@™)=f(a)" = (a)"= (@")'= x" = g, (X).
Therefore f = g, = w (r) and hence v is a surjection. Thus y is an automorphism of G and so
Aut (G)=U,.

3.4.4. Self Assessment Question: Determine all the automorphisms of the group Z 1 of integers
modulo 10.

3.4.5. Theorem: Let G be an infinite cyclic group. Then Aut(G) consists only two

automorphisms, namely, the identity mapping and the map X+~ x1,

Proof : Given that G is an inifinite cyclic group. Then G =<a>forsomea € Gand a"# ¢
for all non-zero integers n. Let f be an automorphism of G.

Then f(a) € G = < a > and hence f(a) = a" for some ne Z. By 3.4.1 theorem, f(a) is a generator
of Gand G =< f(a) >.

Therefore a = f(a)™=(a")™ = a" and hence nm =1 which implies that either n=1=morn=-1 =
m. Therefore f(a) =a or f(a) =a .

If f(a) = a, then f(x) = x for all xeG and hence f is an identity mapping. If f(a) = a™,
then f(x) = x*for all x € G. Thus, the identity mapping and the mapping x = x* are the only
automorphisms of G.

3.4.6. Self Assessment Question: Determine all the automorphisms of the group Z of
integers.

3.4.7. Self Assessment Question: If G is an inifinite cyclic group, prove that Aut(G) = Z,

3.5. MODEL EXAMINATION QUESTIONS:

3.5.1. Prove that the set Aut(G) of all automorphisms of a group G forms a group under
composition of mappings.

3.5.2. Define the notion of the centre Z(G )of a group G and prove that G/ Z(G ) is
isomorphic to the group I(G) of all inner automorphic of G.

3.5.3. For a cyclic group G of order n, prove that Aut(G) = Un.

3.5.4. Determine all the automorphisms of an infinite cyclic group.
3.6 SUMMARY::

In this lesson, we have learnt the concept of an automorphism of agroup G and
proved that the set Aut(G) of all automorphisms of G is a group under the compositon of
mappings. Also, we have defined the notion of an inner automorphism of a group G and

proved that these form a group which is isomorphic to the quotient group G/ Z(G ) where
Z(G) is the centre of G. Finally, we have completely determined all the automorphisms of a
cyclic group. In particular, if G is a cyclic group of order n, we have proved that Aut (G) is
isomorphic to the group U, of positive integers less than n and relatively prime to n.
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3.7 TECHINICAL TERMS:

. Automorphism
e Inner Automorphism

e The centre Z(G)
. Cyclic group
e Thegroup Un
e Thegroup Z,

3.8 ANSWERS TO SELF ASSESSMENT QUESTIONS:

3.2.3: (1) = (2)

Foranya, b € G, consider f(ab) = (ab) 1 =ba?

=alb? ('since G is abelian)

= f(a) f(b)

Therefore f is a homomorphism

Let a€G. Then a™€G. Consider f(a ) = (a )= a.
Therefore f is a surjection (onto)

Further, for anya, b€G, consider f(a) = f(b)
=al=bl= a=b

Therefore fis an injection. Thus f is an automorphism of G.
) = (3).

For any a, bG, consider (ab™!) = f(ab) = f(a) f(b) =ab!
There fore (ab)*=atb™?

(3)=(4)

For any a, b € G, consider (ab) = (@) *bY) =@ hHt=(0Ht@ht="ha
Consider a%b? = a(ab)b = a(ba)b = (ab)?

so a%b? = (ab)?

(4)= (5

Leta, b € G, we have (ab)’ =e = e.e =a%°

(ab)'=a.b = al.bland (ab)? = a?b?

There fore 0, 1 and 2 are three consecutive integers n
such that (ab)"=a"b" for any a, bEG

(5) = (1)

Let n be an integer such that

(ab)™*=a"1 b™, (ab)" = a"o" and (ab)™! = a"*! b"for all a, b € G.
Now for any a, bEG, consider a"*(ab™)b = a"b"

= (ab)" = (ab)™ 1(ab) = a" }(b" ta)b

= ab™!=b"a (By cancellation laws)

similarly ab" = b"a

Now, consider (ab)b™! =ab" = b"a = b(b"'a) = b(ab™?)
= (ba)b™! = ab = ba (cancellation laws)

Hence G is abelian.

3.2.5: Suppose f: G—G! is an isomorphism of groups and a € G. Now we show that the order
of a and the order of f(a) are the same.

Assume that o(a) = n and o(f(a)) = m. Then a"=e and (f(a))™ = e!, where e and e'are the
identities in G and G? respectively

Since f is an isomorphism of G onto G,

we have a' = e < f(a") = f(e)=e! < f(a)! =e! for any positive integer t —(1)
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From (1), we have a" =e < f(a)" = e?
Therefore m/n (since o(f(a)) = m

Also from (1), we have (f(a))™ =e! <am=e
Therefore n/m (since o(a) = n)
Hence m = n, that is, o(a) = o(f(a)).

3.3.3: Consider the centre Z (G)of the group G. Now we show that Z(G) is a normal subgroup
of G.

Z(G) = ¢ since e€ I (G)

Now for any a, be Z(G) and xeG, consider (ab)x = a(bx)
= (bx)a = (xb)a = x(ba) = x(ab)

Therefore abe Z(G)

Now let a€ Z(G) = ax = xa

Consider ax = xa = axa™* = xaa ! = xe = X

S axal=x D ataxat=a X = exal=a X

= xal=alx

Therefore a'e Z(G)

Thus Z(G) is a subgroup of G.

Now for any a€ Z(G)and g € G,

we have gag™ = agg™ = a€ Z(G)

Hence Z(G)is a normal subgroup of G.

3.3.5. Let G be any group

(i) Gisabelian < ab =baforanya, b e G
<G =Z(6) o G/ Z(G) is trivial
< I(G) is trivial (by 3.3.4)

(ii) fa € I(G) and he Aut(G)

Then for any x€G, (ho f.oh™)(x) = h(f. (h1(x))
=h(ah*(x)a!) = h(a) h(h (x) )h(a?)

= h(a) xh(a) "= T (X)

Therefore hof, oh™ = fiy) € 1(G)

Thus I(G) is a normal subgroup of Aut (G).

3.4.2: Uy ={1,7,11,13,17,19,23,29}
Ui = {1,2,3,4,5,6,7,8,9,10,11,12}

3.4.4: Consider Uy ={1,3,7,9}

By 3.4.3 theorem (2), Aut (Z10) 2 Uso. Since 0(U10)=4,

there are four automorphisms of Zyo. These are X X, x— X3, x— x" and x+ x°
Note that 9x is the inverse of x for any X& Zy.

3.4.6. By 3.4.5 theorem, the only automorphisms of Z are the mappings X — x and x— —x
(since Z is infinite cyclic groups).

3.4.7. Let G be an infinite cyclic group.Then Aut (G) = {id, f} where id is the identity
mapping of G and f is defined by f(x) = x* for all x€G. Any group of order 2 must be

isomorphic to Z, and hence Aut(G) = Zo
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LESSON -4
CAYLEY’S THEOREM

OBJECTIVES:
Objectives of this lesson are to

%

% prove the bisections of any set onto itself froma group.
state and prove theCayley’s theorem.
¢+ quote certain important applications of Cayley’s theorem.

X/
°

>

STRUCTURE:

4.1 Introduction

4.2 Group of permutations

4.3 Cayley’s theorem

4.4 Applications of Cayley’s theorem
4.5 Model examination questions

4.6 Summary

4.7 Technical terms

4.8 Answers to self assessment questions
4.9 Suggested Readings

4.1: INTRODUCTION:

Most of the groups when they were first identified, were in the form of a set of
transformations of a particular mathematical structure. Most finite groups appearedas groups of
bijections of an n element set onto itself for some positive integer n. It is known that the S(X)
of all bijections of a set X onto itself forms a group under the usual composition of mappings.
The English mathematician Cayley’s first noted that any abstract group can be viewed as a
subgroup of the group S(X)for a suitable set X. In this lesson, we shall prove this theorem of
Cayley and derive certain important consequences.

4.2: GROUP OF PERMUTATIONS:

The Cayley’s theorem states that any group can be identified with a subgroup of the
group of permutations on a suitable set. Before taking up the proof of the Cayley’s theorem,
we shall first prove that the permutations on any set from a group. Let us begin with the
following.

4.2.1. Definition: For any non-empty set X, any bijection of X onto itself is called a
permutation or symmetry on X. The set of all permutations on X will denoted by A(X).

4.2.2. Theorem: For any non-empty set X, A(X) is a group under the composition of
mappings.

Proof: Let us recall that an injective (one-one) and surjective (onto) function is called a
bijection and that the composition of two dijections is again bijection.

Now, let X be a non-empty set. Then the composition ‘0’ is a binary operation on A(X).
Clearly ‘o0’ is an associative operation. Also, the map id: X — X, defined by id(x) = x for all x
€ X, acts as the identity element in A(X); thatis, foid=f=ido f

For any f € A(X). Further, for any bijection f: X—>X, we can define f1: X—X by
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f1(y) = x if and only if f(x) = y (Since f is a bijection, there exists unique x in X such that
f(x) = y). Then, clearly f* is a permutation on X and fof * =id = fof

Therefore, each element of A(X) has inverse. Thus A(X) is a group under the
composition o of mappings.

4.2.3. Self Assessment Question: List all the elements of A(X), where X ={1, 2, 3}.
4.3: CAYLEY’S THEOREM:

In this section, we shall prove that any abstract group can be identified with a group
of permutations on a suitable set X (that is a subgroup of A(X)).

4.3.1. Theorem (Cayley’s Theorem): Any group is isometric to a group of permutations on
a set.

Proof: Let G be a group, that is, G is a non-empty set together with a binary operation
satisfying the axioms of group. Take X to be the set G, ignoring the binary operation on it. For
each a € G, define ta:X— X by ta (x) = ax for all x € X. Note that X = G and the product ax in G
is written as ax. Then t, is a bijection; for

ta(X) = ta (y) for any x,y € X
= ax = ay
=X=Yy
(by cancellation laws) and, for any yeX, a'yeX. And ta (aly)= a(aly) = y

Therefore taA(X), the group of permutations on X.
Let H={t./aEG}

we shall prove the following for any a, b€G:
(1) taOtp = tap
(2) te =id, the identify map on X

(3) ta'l = ta—l

For any XEG, consider

ta0ty (X) = ta (tb(X)) = a(bx) = (ab)x = tan(X)

Therefore, ta 0ty = tan.

Also te (X) = ex = x = id(x) for any xEG and hence te = id
Now, ta0t,-+ =t -+ =te=id =t,-», =t,-2 0 taand
hence t* =t -1

These (1), (2) & (3) imply that H is a subgroup of A(X)
We shall prove that G ~ H
Define f:G—H by f(a) = ta for any a€G

Since every element in H is of the form t. for some a€G, f is a surjection.

Also, by(1) above, f(ab) = tao = ta 0 to = f(a) 0 f(b) for any a, beG and hence f is a
homomaorphism. Also, for any a, bEG, f(a) = f(b) that implies ta = ty

that implies ta (e) =tw(e) = ae=be=a=Dh.
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Therefore f is an injection, Thus f: G — H is an isomorphism and hence G is isomorphic to
the subgroup H of A(X).

The above theorem enables us to identify any abstract group as a more concrete object,
namely, as a group of permutations. However, there are certainshort comings; for if G is a
group of order n, then the group A(X), considered inthe proof of the above theorem, has n!
elements. Our group G of order n is some what lost in the group A(X). Which is huge in
comparison to G. Now, one can ask the question: Can we find a more economical X so as to
find smaller A(X) in which G can be identified This is accomplished in the following, which
is actually a generalization of theorem 4.3.1

4.3.2. Theorem: Let G be a group and H a subgroup of G. Let X be the set of all left cosets
of H in G. Then there is a homomorphism f of G into A(X) such that the kernel of f is the
largest normal subgroup of G which is contained in H.

Proof: Given that G is a group and H is a subgroup of G. Also given that X = {xH /x € G}
For any a € G, define ga : X— X by ga (xH) = (ax)H for any xH € X. Firstnotice that, ga is well-
defined, in the sense that ga (xH) does not depend on X, but it depends on the whole coset xH,
in which x is a particular element.
For xH = yH

= XxyeH

= (ax)*(ay) = x'atay = x?'yeH

= (ax)H = (ay)H

= Ja (XH) = da (yH)
Therefore ga is well defined Now we shall verify that ga is a bijection of X onto itself
For any xH, yH belongs to X, consider
Ga (xH) = 9a (YH)

= (ax)H = (ay)H

= (ax)*(ay) eH

= X7y = (ax) (ay) €H

=xH=yH
Therefore ga: X—X is an injection.
Also, for any yHEX (a’y)HEX and
ga ((ay)H) = (a(@'y))H = yH
Therefore g is a surjection and hence Ja is a permutation on X; that is 9a €A(X) for each a
€ G. Now define f: G — A(X) by f(a) = ga for any aEG For any a, b€G and xH € X, we have
(9a 0 Go)(xH) = ga(9b(xH)) = (a(bx))H = (ab)xH = gab (xH) and hence ga o gb = gab This says that
f(ab) = f(a)f(b). Therefore f is a homomorphism. Now, let us evaluate kernel of f.

ker f={a€G / f(a) = id} = {a€G/ ga = id}
= {a€G / ga (xH) = xH for all xHEX}
= {a€G / axH = xH for all x€G}
= {a€G / xaxeH for all xG}

Being the kernel of a homomorphism, Ker f is a normal subgroup of G (see 2.3.3)and clearly
ker f c H(for, a€ Ker f= xlaxEH for all XxEG = e'lae EH=aEH)

Also, if N is a normal subgroup of G which is contained in H, then N Ker f (for,ae N =
xtax e Nc Hforallx € G = a€ Ker f).
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Thus, ker fis the largest normal subgroup of G which is contained in H.
4.3.3.Self Assessment Questions: Deduce Cayley’s theorem from the above theorem 4.3.2.
4.4: APPLICATIONS OF CAYLEY’S THEOREM:

We shall apply Cayley’s theorem of the previous section in proving certain results on
the structure of certain finite groups. Let us begin with the following.

4.4.1. Definition: Agroup G is called simple if it has no non trivial normal subgroups; that is,
if {e} and G are the only normal subgroups of G.

4.4.2. Examples: The trivial group {e} is clearly simple. Also, any group of order a prime is
simple, for if G isa group of order p and p is prime and if H is a subgroupof G, then O(H) divides
O(G) =p (by Lagrange’s theorem) and hence O(H) = 1 or p. So that H = {e} or H=G.

4.4.3. Self Assessment Question: For any positive integer n>1, prove that the group Z is
simple if and only if n is a prime number.

Let us recall that the order of a subgroup H of a finite group G divides the order of G
and O(G)/O(H) is equal to the number of distinct left (right) cosets of H in G. Also, O(G)/O(H)
is known as the index of H in G and is denoted by i(H).We shall use theorem 4.3.2 in proving
the following.

4.4.4. Theorem: Let H be a proper subgroup of a finite group G such that O(G) does not
divide i(H)!. Then H contains a non trivial normal subgroup of G and in particular, G is not
simple.

Proof: Given that H is a proper subgroup of a finite group G such that O(G) does not divide
i(H)!. Let X be the set of all left cosets of H in G. The |X | = i(H) and O(A(X)) = i(H)!. By
theorem 4.3.2, there exits a homomorphism f :G — A(X) such that ker f is the largest normal
subgroup of G which is contained in H. Since H # G and ker f < H, it follows that Ker f is a
proper normal subgroup of G. If kerf = {e}, then f is a monomorphism and hence G ~ f(G) and
f(G) is a subgroup of A(X) and therefore O(G) = O(f(G)) divides O(A(X)) = i(H)!, which is a
contradiction to the hypothesis. Therefore Ker f = {e}. Thus H contains a non trivial normal
subgroup of G(hamely, Ker f) which implies that G is not simple.

4.4.5. Example: Suppose G is a group of order 36 and G has a subgroup H of order 9.

Then i(H) = zf—; = 4 and hence O(G) does not divide i(H)!. Therefore there is a nontrivial

normal subgroup of G contained in H(by theorem 4.4.4) and G is not simple.

4.4.6. Self Assessment Question: Suppose G is a group of order 175 and G has a

subgroup of order 25. Then prove that G is not simple.

4.4.7. Example: Let H be a subgroup of order 11 in a group G of order 99.Then i(H) = zf—;
= % = 9 and O(G) does not divide i(H)!. Then, by theorem 4.4.4, there exists a non trivial
normal subgroup N of G which is contained in H. Since O(H) = 11, which is a prime number
and since O(N) is a divisor of O(H), it follows that O(N) = O(H) (note that O(N) > 1, since N is
non trivial) and hence N = H. Thus H is a normal sub group of G. To summaries, any subgroup

of order 11in a group of order 99 is normal.
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4.4.8. Self Assessment Question: Prove that any subgroup of order 13 in a group of order
65 is normal.

4.4.9. Theorem: Any non abelian group of order 6 is isomorphic to A(X), where X is a
three element set.

Proof: Let G be a non-abelian group of order 6. Then G has an element of order 2(See4.4.10).
Let asG be an element of order 2. That is, e # a€G and a’= e.
PutH = {e, a}

oGy _

Then H is a subgroup of order 2 in G and i(H) = om) 3. Let X be the set of left cosets of H in
G. Then A(X) is a group of order 3!. (since X has 3 elements); that is, o(A(X)) = 3!. By
Theorem 4.3.2, there is a homomorphism f: G — A(X) such that ker f is the largest normal
subgroup of G which is contained in H. In particular, Ker f < H and Ker f is a normal
subgroup of G. Since O(H) = 2, it follows that ker f = {e} or Ker f = H. We shall argue that

ker f= H.

Otherwise, suppose that Ker f = H. Then H is a normal subgroup of G and hence xax*€H for
all xeG. But xax* = e (since a =€) and therefore xax* = a. This implies that xa = ax for all x€G.
Therefore a€Z(G), the centre of G and H ¢ Z(G) c G.

Since O(H) = 2, we have that 2 divides O(Z(G)) and O(Z(G)) is a divisor of O(G) = 6. From
these, it follows that O(Z(G)) = 2 or 6. But O(Z(G)) = 6 (for, since G is a non abelian). Z(G) is a
proper subset of G. Therefore O(Z(G)) = 2 and H = Z(G). Now, choose b€G such that b ¢ H
and consider the normalizer N(b) of b;

i.e, N(b) = {x€G/bx = xb}

Then Z(G) is a proper subgroup of N(b)(Since beN(b) and b € H = Z(G)) andhence 2 is a
proper divisor of O(N(b)) and O(N(b)) is a divisor of O(G) = 6. Therefore O(N(b)) = 6
= O(G) and hence G = N(b) so that bx = xb for all XEG; that is, b€Z(G) = H, which is a
contradiction to the choice of b.Thus Ker f# H and hence Ker f = {e}. Therefore, f is a
monomorphism of G into A(X) and hence G = f(G) < A(X)

But O(f(G)) = O(G) = 6 = O(A(X))

Therefore, f(G) = A(X) and hence f:G— A(X) is a surjection. Thus f is an isomorphism of G
onto A(X) and Gz A(X).

4.4.10. Self Assessment Question: Prove that any finite group of even order has an element of
order 2.

Actually, we prove later a more general result than 4.4.10. If G is a finite group and P
is a prime number dividing O(G), then G has an element of order p. This is nothing but the
Cauchy’s theorem (2.6.1) for a general group which will be proved later. However, we can
try to prove 4.4.10 by elementary methods.

4.5. MODEL EXAMINATION QUESTIONS:

4.5.1. Prove that the set A(X) of permutations on a set X is a group under the composition of
mappings.

4.5.2. State and prove the Cayley’s theorem.
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4.5.3. Let H be a subgroup of a group G and X be a set of all left cosets of H in G. Then
prove that there is a homomorphism f of G into the permutation group A(X) such that Ker f
is the largest normal subgroup of G that contained in H.

4.5.4. Let H be a proper subgroup of a finite group G such that O(G) does not divide i(H)!.
Then prove that G is not simple.

4.5.5. Prove that any non abelian group of order 6 is isomorphic to the group ofpermutations
on a three element set.

4.6 SUMMARY:

In this lesson, we have learnt that the permutations on any set form a group under the
composition of mappings and the Cayley’s theorem which states that any group is isomorphic
to a group of permutations on a suitable set. We have also proved a generalized version of
cayley’s theorem and applied this to prove that certain groups are not simple; in particular, we
have proved that any non abelian group of order 6 is isomorphic to the group of permutations
ona three element set.

4.7 TECHNICAL TERMS:

Permutations

Group of permutations A(X)
Cayley’s theorem

Simple group.

4.8 ANSWERS TO SELF ASSESSMENT QUESTIONS:

4.2.3 Given that X = {1, 2, 3}. Consider the maps id, «, #of X into X as are defined below.

id(1) =1 a(l)=2 B(1)=2
id(2) =2 a(2)=1 B(2)=3
id(3) = 3 a(3)=3 BB =1

Thenid, &, BEA(X) and @0 S, fo aand ﬂz are all other elements in A(X). Thus A(X) = {id, «, 8, ¢ 0
oo ,ﬁz }.

4.3.3: Take H = {e} in theorem 4.3.2. Then Ker fc {e} and hence Ker f = {e}, so that f is an
injective homomorphism of G into A(X), where X is the set of all left cosets of H in G. Thus
G is isomorphic to a group of permutations on a set X. Note that, in this case X is bijective
with G.

4.4.3: Suppose n is a prime number. For any subgroup H of Z,, O(H) is a divisor of
O(Z,)) = nand hence O(H) = 1 or n so that H = {0} or H = Z,,. Therefore Z, has no nontrivial
(normal) subgroups and hence Z, is simple. Conversely, suppose that n is not a prime
number. Then n = mk for m, k > 1.

Consider H = {m, 2m,...... , (k-1)m}. Then H is a non trivial normal subgroup of Z,, and

therefore Z,, is not a simple group.
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4.4.6: Given that G is a group of order 175 and G has a subgroup H of order 25. Then
i(H) = 3—; =7 and O(G) does not divide i(H)! By theorem 4.4.4, there exists a non trivial
normal s‘ubgroup N of G such that N < H. Since H = G, it follows that N = G. Thus G is not
simple.

4.4.8. Imitate the argument given in 4.4.7.

4.4.10: Let G be a finite group and O(G) be even. If G is an abelian group, thenwe can use the
Cauchy’s theorem (2.6.1). If the Cauchy’s theorem (2.6.1) is proved for a arbitrary group, then
we are through (Infact we prove 2.6.1 for a general group later). But here is an elementary
proof.

For each a€G, let A, = {a, a'}. Then the A,’s form a partition of G, that is, for any
a, bEG, either A, =Ajor A, N Ay = ¢ and Usecds, A, may consists of only one element(This
happens when a = a*). For example A = {e}. If, for each a = e, A, is a two element set, then

O(G) = 2m+1 for some positive integer m, which is a contradiction to the hypothesis that
O(G) is even. Therefore there exists a= e such that A, is a singleton set; that is, a = at.

Thus a= e and a% = e and hence a is of order 2.

4.9 SUGGESTED READINGS:
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2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra™, Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.
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LESSON -5
PERMUTATION GROUPS

OBJECTIVES:

Objectives of this lesson are to

%

% define the concept of the symmetric group S» of degree n.

prove that any permutation on a finite set is a product of disjoint cycles.
define the notion of the alternating group An.

% prove that A, is a normal subgroup of index 2 in Sp.
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STRUCTURE:

5.1 Introduction

5.2 The symmetric group Sy

5.3 Cycles and transpositions

5.4 The alternating group An

5.5 Model examination questions

5.6 Summary

5.7 Technical terms

5.8 Answers to self assessment questions
5.9 Suggested Readings

5.1: INTRODUCTION:

In the previous lesson, we have proved that the set A(X) of permutations on any set X
is a group under the composition of mappings and also proved the Cayley’s theorem which
state that any abstract group is isomorphic to a subgroup of the permutation group A(X) for a
suitable set X, infact we have taken X to be the underlying set of the group itself. In particular,
any finite group is isomorphic to a group of permutations on a finite set. For this reason, the
groups of permutations on finite sets become prominent in the theory of structure of finite
groups. Inthis lesson, we discuss these groups and prove certain important properties.

5.2: THE SYMMETRY GROUP Si:

If X and Y are sets and if there is a bijection «: X — Y, then the groups A(X) and

A(Y) of permutations on X and Y respectively are isomorphic under the isomorphism f +— o
o f oa™. Therefore, if X is a finite set with n elements, then the permutation groups A(X) and
A(ly,) are isomorphic, wherel, ={1,2,3, ..., n}.

5.2.1. Definition: Let n be any positive integer and I, = {1, 2, 3, ..., n}. Then the
permutation group A(ln) is called the symmetric group of degree n and is denoted by Sp.

The elements of the symmetric group Snare permutations onl,={1,2,3, ...,
n}. If f€S,, then f(1), f(2), ....., f(n) are n distinct elements of I, and hence I, = {f(1),
f(2),....., f(n)}. For convenience, we describe f € S, by

—_ 1 2 3 .. mn
f_[ (1) Fl2) F(3) . .f(;'z:l]

For example f € Sq defined by f(1) = 4, f(2) = 6, (3) = 9, f(4) =5, f(5) =7, f(6) = 1,
f(7) = 3, f(8) = 2 and f(9) = 8 is denoted by
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5.2.2. Self Assessment Question: Let f € S; be given by

f=(32%%5%7), then what are f(3) and f(6).

571623 4
If f and g are permutations in Sy, then recall that f o g is defined by (f o g )(i) = f(g(i)) and
that Sn is a group under this composition of mappings.

5.2.3. Self Assessment Question: Let f and g € Sg be given by

—{fl2345678
f‘[5?13463:)and

g=(:232551% ) thencomplete f og and !

5.2.4. Self Assessment Question: Compute (; =332 )o(Z 23155 )inSs
5.2.5. Note: Let n and m be positive integers and n<m. Define & : Sy — Sm by

R e

for any f € Sn. Then as you can easily check, & is a monomorphism. In other words, Sn is
isomorphic to a subgroup of Sm and hence, we can identify permutations in S, with those in
Sm.

5.2.6. Example:

The permutation (5 23 3) in Ss can be identified with (§ § 235 ¢ 7 5) inSs

5.3: CYCLES AND TRANSPOSITIONS:

In this section, we shall discuss a special type of permutations, namely cycles. These
cycles play a very important role in the study of permutations. Infact, we shall prove that any
permutation can be expressed as a product of disjoint cycles in a unique way, in some sense.
Let us begin with the following.

5.3.1. Definition: Let n be any positive integer and a1, az, ........... , ar be distinct elements
inly ={1,2,...,n}andr>1 Letf I,—I, be defined by

;59 !’fﬂzﬂilif{:r

fla) =4 ™ if a=a,
el ifa+Faq;1=i<r

Then f is a permutation on I, and is denoted by (a1a........... ar). This is called an r-cycle or a
cycle of length r.

For example, the cycle f= (3 4 2 6 8) is a permutation in Sg (or in Sy for n > 8)
defined by

f(3)=4,1(4)=2,1(2) =6, f(6) =8, f(8) =3and f(a) =aforall a «{3,4,2,6,8}.
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Note that the cycles (3 4 2 6 8)and (2 6 8 3 4) are same.

5.3.2. Self Assessment Question:
Letf=(52 7 3 6 8)acycleinS . Then what is f(i) forany 1<j<10?

5.3.3. Self assessment question: is the permutation

f:[123456?3'}

1372692 B) a cycle in Sg? If so, write f in the cycle notation.

5.3.4. Definition: Two cycles f = (a1, a, ........... ,a) and g = (b1, b, ........... , bs) are said to be
disjoint if aj # bj forany 1<i<r and 1< j<s; that is, f and g are called disjoint if the sets
{a1, &, ........... ,aryand {b1, by, ........... , bs} have no common elements.

5.3.5. Examples: The cycles (4 6 35 2) and (7 1 8 9) are disjoint while the cycles (5 3 4 2
8)and (4 1 6 7)are not disjoint.

5.3.6. Note: If f and g are disjoint cycles in S, thenfog=gof for, if f = (a12........... ar)
and g = (biba........... bs) with aj bj, then (f 0 g)(a) = f(a) =a=g(a) = (gof)(a), if a=aiand
a# bj

and f og(a) = f(a) =ai+1 = g(ai+1) = 9 o f(ai) and similarly

(fog) ()= (g0f) () Thus f 0 g=gof This is to say that any two disjoint cycles
commute.

Now we shall prove the following theorem which express any permutation as a
product of disjoint cycles. Remember that an r-cycle is defined only where r > 1.

5.3.7.Theorem: Let f be any non-identity permutation in S,. Then f can be expressed as a
product of disjoint cycles each of length >1. Also, this expression is unique in the sense that,
if

fz=nomo....... o ax and

where ¢ ’s and g ‘s are disjoint cycles, then k = m and there is a permutation & in S,
such that £ = aj) foreach 1<j<m.

Proof: Given that f is a non-identity permutation in S,. Write T ={a € I,/ f(a) = a}.
Since f is not the identity map, it follows that ¢=T  I,,. Choose a;€T and consider az, f(az), f 2

(al),.....

These are all elements of 1,, and hence these can not all be distinct (Since I, isfinite).

Therefore, there exists m < k such that f ™(a1) = f ¥(a1) and hence f ¥™(a;) = a1 and k — m > 0.
Therefore there is a positive integer r such that f" (a1) = ai. Now, let r1, be the least positive

integer such that f " (a1) = a1. Thenry > 1, since f(a1) # ai1. Consider the ri- cycle
o1 = (a1 f(ay) f2(a1) ..... fhl (ar))

If T1 ={a, f(as), f?(az),...., f'"" (a)} then fand ou are equal on To. If Ty =T,
then f = a1 Otherwise, we can choose a2 €T — Ti and repeat the above procedure to
construct an ro-cycle.
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a =(a f(az) (a2t f"1 (@), where f "2 (a2) = a. Again fand o, are equal on
the set T: ={az,f(a2),f2(az) .......... , 1 (a2)}. Also Ty and T2 are disjoint and hence o and o
are disjoint cycles. If T; U T2 = T, we continue the procedure to construct cycle o3 and so on.
Since T is finite, this process should terminate at a finite stage; that is, we get that the
disjoint sets Ty, Ta,........ , Tk and cycles a1, a9 ..o , o suchthat Ty UT2 U, U Tk

=T.
a = (ai f(a)f?(a)....... frt (a)), f" (ai) = ai

Ti = {a, f(a), F2(a),......... , T (a))} and f and i are same on Ti. All this data
givesusthat f =awom oas o........ oox and au, a2, B, ........ , ox are pairwise disjoint
cycles (note that each ai is identity on T;for i = ))

To prove the uniqueness, suppose f= fio 0 S o........ o [ be another expression of
f as a product of disjoint cycles fi's Suppose m < k. Suppose acl, such that pi(a) = a (that
is, a is involved in the cycle f1 ). Then fi(a) =aforall j# 1 and f(a) = (S0 2 0 [z o........ o
fn) (a) = B (a) = a and hence there exists ji such that (2; )(a) # aand aj(a) =aforall j= ji.

Then it follows that 1 = ; and by the cancellation law, £ o fs o........ fr=TI; = 7, O

Now, let us continue the above procedure to get jo, js,......... , Jm such that Bi = a;, for

2 <i<m. If m <k, we get that the product of certain o;'s is identity, which is a contradiction.
Therefore m = k and i — ji is a permutation of {1, 2, ....... , m} such that Bi = ;.. Hence the

theorem is proved.
5.3.8. Self Assessment Question: Imitate the procedure given in the above proof to express the
following permutations in S, as a product of disjoint cycles.

(1).'::[123456?391[!'1112)
3276l041125911 8

(2) _[123456?39101112)
9= 853726910412 111

(3)h: 123-—156?391[!11112)
521117410896 3 12

5.3.9. Definition: A 2-cycle is called a transposition. That is, for any a = b e I, the
permutation which maps a to b and b to a and keeping all the other elements of I, fixed is
called a transposition.

For example the 2- cycles (4 5), (3 4) (5 9) are all transpositions. We can easily
check that any r-cycle a = (a1a ......... ar) can be expressed as a = (aiar) o (a1ar-1) O .........
o(aiaz) which is a product of r-1 number of transpositions.

5.3.10. Self Assessment Question: Express the cycle (6 9 4 2 7 5) as a product of
transpositions.

5.3.11. Theorem: Any permutation in Sp (n > 1) can be expressed as a product of
transpositions.

Proof: Let n > 1 and f be a permutation in Sy. If f is identity, then
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f=(@b)o(ab)foranya #b € In.
Suppose f is not the identity. By theorem 5.3.7.
we can write f = a1 0 @2 0 as.... 0 s Where a1, a2 o are cycles and each cycle ¢ is a

product of transpositions. Therefore f is a product of transpositions.

5.3.12. Self Assessment Questions: If ¢ is an r-cycle, then prove that O(«) = r and that the order
of any transposition is two.

5.4: THEALTERNATING GROUPA:

In the previous section, we have proved that any permutation can be
expressed as a product of transpositions. But this expression may not be unique as in
theorem 5.3.7. However, we have the following.

5.4.1. Theorem: Let f be permutation in Spand f= 10 & 0 a3 o........ oax and f= fio
0 [% O........ o [m be two representations of f as products of transpositions «'s and f' s.
Then K is even if and only if m is even.

proof: Since the theorem is trivial for n = 1 or 2, we can suppose that n > 2. Consider
the polynomial in n-variables given by

P = p(X1, X2, cvevnne , Xn) = ITi<j (Xi—X;).
For any permutation f in Sy, let f(p) = IT i< j (%) — XtG))-
Clearly (fog) (p) =f(g(p)) foranyf, g € Sh. We can easily verify that « (p) = —p for any
transposition « in Sy
Now iff =10 w0 a3 0........ 0ok =10 o [Ho....... o8m, then (=1)*p = f(p) =(-1)"p and
hence (—1)* = (-1)™ which implies that k is even if and only if m is even.

5.4.2. Self Assessment Question: Let n = 5. In this case, what is the polynomial p given in
the above proof. What is f(p) if

V) f=(35 2 1)o(2 4)
2)f=(2 5)

5.4.3. Definition: A permutation f is called an even permutation if f can be expressed as a
product of even number of transpositions. f is called odd if it is not even.

In theorem 5.4.1, we have proved that, if f is a product of even number oftranspositions,
then it cannot be a product of odd number of transpositions. Therefore, the concept of
even permutation (5.4.3) is well defined. Also, in view of theorem 5.3.11, any permutation is
either even or odd.

5.4.4. Self Assessment Question: Determine which of the following permutations are even?
@ F=(G3Eess00

2) g=(B 51 40(7 6)o(2 8)

(3) h=@B20(7 40(1 80(2 3 8)o(4 6)

4 a=(582647)
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5.4.5. Self Assessment Question: Prove that anr - cycle is even ifand only if r is odd.

5.4.6. Theorem: For any n > 1, the set of all even permutations is a normal subgroup of
index 2 in Sp.

Proof: Consider the group G = {1, -1} under the usual multiplication of real numbers. Let
A be the set of all even permutations in S, n > 1. Then A, is a subgroup of S,,.

Define 9: S, >G by

_fliffiseven
o(f) = {—1 if fis odd
Since f o g is even if and only if either both f and g are even or both of them are odd, it
follows that @is a homomorphism. Since 1 is the identity element in the group G we have
ker @ = {f € Sn/ 6 (f) = 1} = Ay Therefore A, is a normal subgroup of Sy (by theorem

2.3.3). Also, by the fundamental theorem of homomorphisms (2.5.1), we have
Sn/ An=Sn/ Kerd=G.

Since G is a two element group, so is the quotient group S,/ An.

Since | Sn |= | An| | Sn/An |= | An]. 2, it follows that A, is of index 2.

5.4.7. Definition: The group even permutations in Sy is called the alternating group of degree n
and is denoted by A,
5.4.8. Self Assessment Question: For any n > 1, prove that O(An) = n

-

5.4.9. Self Assessment Question: List all the elements of A2, As and Au.
5.5. MODEL EXAMINATION QUESTION:

5.5.1. Prove that any permutation in S, can be uniquely expressed as a product of disjoint
cycles.

5.5.2. Define the notion of the alternating group A, and prove that it is a normal subgroup
of index 2 in S.

5.6 SUMMARY:

In this lesson, we have introduced the notion of the symmetric group S, and proved that any
permutation in S, can be expressed as a product of disjoint cycles. Further, we have introduced
the notion of an even permutation and provedthat the set of all even permutations is a normal
subgroup of index 2 in Sy.

5.7 TECHNICAL TERMS:

e Permutation
Symmetric group Sn
Cycle

Transposition

Even permutation
Odd permutation
Alternating group An
Disjoint cycles.
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5.8 ANSWERS TO SELF ASSESSMENT QUESTIONS:
5.2.2 f(3)=1and f(6) =3

523 fog=(1311357%)

3 8
1=(32513278)
5.2.4
1 2 3 4 5 6
N
5 6 4 1 3 2
N N AN
6 5 2 4 1 3
,(123455) (123455
"\2431265/% 564132
=(123455
652413
53.2 132 :
f=(l3%i202zs010)

533 f=(1547 98 2

5.3.8 (1) Choose a such that f(a) = a. For example f(4) # 4 and consider 4, f(4), f(4), .... so on
until we get set 4 again. In this example, we have 4, f(4) = 6, f 2(4) = f(6) = 4

Now we have the cycle (4 6). Take some other than 4 or 6, such that f(a) = a. For example, we
can take 5, since f(5)= 5. Then 5, f(5) =10, f%(5) = 9, f3(5) =5

Then we have the cycle (5 10 9). Next pic3toset3,f(3) =7f23)=1,f3(3)=3.
and we have the cycle (3 7 1). Again pic 8 to set 8, f(8) = 12, f(8) = 8.

and consider the cycle (8 12). The other elements, namely 2 and 11 are fixed by f. Thus we
have

(1)f=(46)o(5 10 9o(3 7 1)o(8 12)
(2)g=(18 10 12)o(2 5)o(4 7 9)
(3)h=(1 57 10 6 4 11 3)

53.10(69 4 2 7 5)

=(65)0(6 7)o(6 2)o(6 4)o(6 9)
5.3.12: Let o =(aja9.......... ay) beanr-cycle.
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Then of (a1) = a(a (a1)) = o (a2) = a?(@@s) = .......... =o (@) =a.Forany 1< i<r,
N R TSP, ,r . a1. &......aj) and hence o' (ai ) = a for every 1<i<r. Thus o" = id. Also
o' #id for any i <r and hence O(a ) =r. If a is a transposition, then it is a 2- cycle and hence
O(a) =2.

5.4.2: Consider the polynomial x1
P = p(X1, X2, X3,0ervene ,X5) = [1ie - (Xi- X))

e, p = (Xa— X2)( Xa— X3)( X1~ Xa) ( X1~ Xs5)( X2~ X3)( X2~ Xa)( X2— X5)( X3— Xa)( X3— X5)( Xa— Xs)
(1) f=(3%1%°) and hence
f(p) = (Xs— Xa)( Xa— X5)( Xa— X1)( X3~ X2) ( Xa— X5)( Xa— X1)( Xa— X2) ( X5~ X1)( X5~ X2)( X1~ X2)
(2) f=(25) and hence
f(p) = (x1— X5)( X1~ X3)( X1— Xa) ( X1~ X2)( X5~ X3)( X5— Xa)( X5~ X2)( Xa— Xa)( X3~ X2)( Xa— X2)
544(1)f=(13 8 2 7)o(4 6)

=1 7)o@ 2o(1 8)o(1 3o(4 6)
Therefore f is odd since f is a product of odd number of transpositions.

2)g=B 51 4o(76)o(2 8)
=B4)0(3 1)o(3 5o(7 6)o(2 8)

Therefore g is odd since g is a product of odd number of transpositions.

A h=@B2)0(74)0(18)o(238)o(46)
=(32)o(7 4o(1l 8)o(2 8o(2 3)o(4 6)

Therefore h is even since h is a product of even number of transpositions

4 a=(8264T7)
=05 7o 49o0B 6)o( 2) o (5 8), which is a product of odd number of
transpositions and hence o is odd.

545 Anyr - cycle o = (a1a........... ar) can be expressed as ¢ = (a1 ar)o(ar ar-1)o......o (a1
a2) which is a product of r—1 number of transpositions. Thus « is even if and only if r—1is
even if and only if r is odd.

5.4.8: A, is anormal subgroup of index 2 in S, (by 5.4.6) and hence

2= 0(Sn/ An) = 252 = therefore 0(4,,) =2

Oldy)  Oldn)

5.4.9: Ay = {id}

Az ={(123),(213),id}
Ag ={id, (123),(213),(234),(324),(341),(431),(12)0(34),(13) 0 (24), (1 4o (2
3), (124), (214)}
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O(Ay) =12=% =25
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LESSON - 6
ANOTHER COUNTING PRINCIPLE

OBJECTIVES:

The objectives of this lesson are to

X/
X4

L)

define the concepts of conjugate class and normalizer of an element of a group.

obtain the class equation of a finite group.

prove that any group of order p" ( p is prime, n>0) has a nontrivial centre and that any group
of order p? is abelian.

state and prove the Cauchy’s theorem for general finite groups.

determine the conjugate classes in Sy,.

X/
°

X3

S

X/
X4

L)

0’0

STRUCTURE:

6.1 Introduction

6.2 The conjugacy relation

6.3 The class equation of a finite group
6.4 Groups of order p"

6.5 Cauchy’s Theorem

6.6 Conjugate classes in S,

6.7 Model Examination questions

6.8 Exercises

6.9 Summary

6.10 Technical terms

6.11 Answers to self assessment questions
6.12 Suggested Readings

6.1: INTRODUCTION:

We introduce an equivalence relation on a given finite group G and find a neat
algebraic description for the size of each equivalence class. Using these we deservean equation
known as “the class equation” of any finite group and deduce several beautiful and powerful
results on the structure of finite groups. In particular, we extend the Cauchy’s theorem for
finite abelian groups to general finite groups.

6.2: THE CONJUGACY RELATIONS:

6.2.1.Definition: Let G be a group and a, h G . we say that b is a conjugate of a if b = c™ac for
some ¢ eG. If b is a conjugate of a, we write it as a ~ p . This relation '~ is called the conjugacy
relation on G.

6.2.2. Theorem: Let G be a group. The relation conjugacy is an equivalence relation on G.

Proof Leta,b,c € G

(i) a~aas a=e'ae where e is the identity element of G.
Therefore, <~ is reflexive

(if) Suppose that g ~ b

Then b =x"ax for some xeG

Now xb = a x and xbx*=a

1 -1

So,x'eGanda=(x ") bx L.

=bh~a
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Therefore, <~ is symmetric.

(iii) Suppose that a ~band b~ ¢.

Thenb = x*axand ¢ =yt by for some x, y G.

Now ¢ =y by = yi(xtax)y = (yx1) a(xy) = (xy)ta(xy) and X,y G .

Therefore, <~ is transitive.

Hence the conjugacy relation <~ is an equivalence relation on G.

6.2.3. Self Assessment Question: If G is an abelian group and a, beG, prove thatg ~ph <
a=h.

6.2.4. Definition: Let G be a group and g € G .Then the equivalence class of ‘@’ w.r.t <~ is
called the conjugate class of a in G, and is denoted by C(a).

Thus C(a)={beG/a~b}={x"ax/xeG}.

6.2.5. Notation: For any element a in a group G, the number of elements of the conjugate class
C(a) is denoted by C,.

6.2.6. Note that for any elements a and b in a group G, the conjugate classes C(a) and C(b)

are either disjoint or identical and therefore the distinct conjugate classes in G form a partition

of G, and hence O(G) = >Cawhere the sum runs over a set consisting of one element from each
conjugate class.

6.2.7. Definition: Let G be a group and a € G. Then the set {x € G / xa = ax} is calledthe
normalizer of a, and is denoted by N(a);

Thatis, N (a)={xeG / xa = ax}.
6.2.8. Lemma: Let G be a group and a=G. Then N(a) is a subgroup of G.

Proof : Since ea = a = ae, we have £ N (a) and hence N(a) is a non-empty subset of G.

Letx, yeN(a).
Then ax = xa and ay = ya.
= ax=xa and y'a=ay®

Now (xy™)a=x(y'a) =x(ay™) = (xa)y™ = (@x)y™ = a(xy™).
Soxyle N (a).

Therefore, N(a) is a subgroup of G.

6.2.9. Note: For any subgroup H of a subgroup G, the set of right cosets of H may not form
a group (unless H is normal in G) under the usual operation.

6.2.10. Lemma: Let a be an element of a group G, C(a) the conjugate class and N(a) the
normalizer of ain G. Thenthe set C(a) is bijective with the set of all right cosets of N(a) in G.

Proof: Let a € G.

Consider C(a) = {x'ax/ xeG} and N(a)={xeG/xa = ax}.
Let X be the set of all right cosets of N(a) in G;

Thatis, X ={N (a) x / xeG}
Define f: C(a) — X by f (x'ax) = N(a)x for any x'ax£C(a), x€G .

First observe that, for any x,y G,
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xtax = ylay = axy' = xy'a
= xy*eN(a)
= N(@)x=N()y
So, f is well defined.
Also, for anyx, YeG, f (xax) = f [y'ay) = N(a)x=N(a)y
= xy*eN(a)
= apxy)=(xyha
= x'ax = ylay
So, fis one - to - one.
Let N(a)xe X where x£G.

Now x*axeC (a)and f (x*ax) = N (a)x
Therefore fis onto X.
Hence, f :C(a) — Xis a bijection.

6.2.11. Self Assessment Question : For any group G, prove that the center Z(G) = 1, . N (a)
6.3: THE CLASS EQUATION OF AFINITE GROUP:

In this section the class equation of a finite group is derived. This equation isuseful in
proving several important results in the structure theory of finite groups.

6.3.1. Theorem: Let G be agroup and a €G. Then C, =

oG )
D{.-"F[::I}l'

Proof : Consider C(a)={x"ax/ x£G}and N(a) ={xeG/xa = ax}.
Let X denote the set of all right cosets of N(a) in G. Since G is finite, we have that C(a), N(a),

Xare all finite sets. We know that the number of right cosets of N(a) in G is - °(

So the number of elements in X |s

By lemma 6.2.10, X is bijective Wlth C(a) That is, the sets X and C(a) have the same number
of elements.

Therefore, Ca =

- where C, is the number of elements of C(a).

6.3.2. Theorem(The Class Equation):

Let G be a finite group. Then O(G ):Zj—ﬂg— where the sum runs over one element a
in each conjugate class. '

Proof: Let G be a finite group. For @ € G, let Ca denote the number of elements of
conjugate class C(a). Since the distinct conjugate classes in G form a partition of G, it follows
that O(G) = X Cawhere the sum runs over one element a in each conjugate class.

o6

By theorem 6.3.1, for any a €G, we have Ca=—; —

5 ] . - -
Therefore O(G) = Zj—ﬂT where the sum runs over one element a in each conjugate class.

6.3.3. Note:

i) Let G be an abelian group. Then Z(G) = G and every conjugate class is aset consisting of
exactly one element. So the class equation does not give any new information.
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i) The class equation is useful in the case of non-abelian groups.

6.3.4. Example : Consider the symmetric group of degree 3, S3 which is the non-

abelian group with least number of elements. We have O(S3)=6.
Let e denote the identity transposition. Put f=(12),g=(23)and h=(31)
Thenfg=(132)and gf=(123). Cleary f' =f,g'=g, h'=hand (fg)*=gf.
So, S3={e, f, g, h, fg, gh}
Also, fh=(12 3) =gfand gh = (13 2) =fg. Now C(e) = {e},
C(f)={x'fx/xES3}

={ e'fe, Fff, g'fg, hith, (fg)*f(fg), (o) (g3}

={f, h, g} = C(g) = C(h), and C(fg) = {fg, gf}.
Therefore C(e), C(f) and C(fg) are three distinct conjugate classes in S3.
6.3.5. Lemma : Let G be agroup and a=G.Then ac Z (G) if and only if N(a) = G. If G is finite,
aeZ(G)ifand only if O(N (a)) = O(G).

Proof:acZ(G) < ag=ga forall gG

< geN(a)forall geG.
< N@)=G
Therefore, asZ (G) < N(a) =G —(I)
Suppose that G is finite.
Then N(a) = G ifand only if O(N (a)) = 0(G)— (1)
From (I) and (1), we have that
aEZ(G) < O(N(a)) = 0(G).

6.4: GROUPS OF ORDER P":

Groups of order p", where p is a prime number and n is a positive integer, play an important
role in the structure theory of finite groups.

6.4.1. Theorem : Let G be a finite group of order p", where p is a prime number and n is a
positive integer. Then Z (G) = {e}.

Proof : Given that G is a finite group of order p", where p is a prime number and n is a
positive integer. Take the class equation of G;

O(G) = Zg D.Sa

where the sum runs over one element ‘a’ from each conjugate class.
This can be written as 0(G) = X, ¢ 7 5, ggﬂ +Toeze gg—g —(I)
By lemma 6.3.5, we have a€Z (G) o(N (a))=0(G) |
That is, a€Z (G) & —-L =1

S0, (1) becomes O(G) = O(Z (G)) + Z, 7 (z) s —(ID)

Also, by lemma 6.3.5, we have '

ag¢Z(G) < O(N (a)) < O(G) —(III)

Since N(a) is a subgroup of G, by the Lagrange’s Theorem, O(N(a)) is a divisor of
OG)=p" —(V)
From (111) & (IV), p|

A

a{&]
ol @) forall agz(G)
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a{c )
Ea EZ(C) grN (a )y

. Ezgﬂ—ﬂ we have that p| (0(G)-Z, 7 (¢) o )

g;:.- lan

and that p

Since p| p" = O(G)andp

So from (1), we have that p | 0(Z (G))

Therefore, O(Z (G))> p>1 and hence Z(G) # {€}.

The above theorem can be rephrased as follows:

“ Any group of prime power order has nontrivial centre”.

6.4.2. Self Assessment Questions : Prove that any group of order 625 has nontrivial
center.

6.4.3. Corollary : If G is a finite group of order p? where p is a prime number, then G is
abelian

Proof : Given that O(G) = p? where p is a prime number.

Then, by theorem 6.4.1, Z(G) = {¢} and hence 0(Z(G)) > 1.

Since Z(G) is a subgroup of G, by the Lagrange’s Theorem, O(Z(G)) is a adivisor of
0(G) = p?

So, 0(Z(G)) = p or p>.

IfO(Z(G)) = p? then 0(Z(G) ) = O(G) and that Z(G) = G and hence G is abelian.
Suppose that O(Z(G)) = p.

Choose a € G such that a ¢ Z(G).

We have Z(G) cN¢@)and a € N¢a).

Since O(Z(G)) =panda ¢ Z ( G), we have o(N (a)) > p +1.

Since N(a) is a subgroup of G, O(N (a)) |0(G) =p?e

As O(N(a))> p+1 and O(N(a)) | p?, we have O(N (a))= p? = 0(G).

So, ae Z(G), a contradiction toa ¢ Z (G).

Therefore O(Z (G))= p* =0(G) and hence Z (G)=G.

Thus G is abelian.

6.4.4. Self Assessment Question: Prove that any group of order 169 is abelian.

6.5: CAUCHY’S THEOREM

1. Cauchy’s theorem was already proved for finite abelian groups in lesson 2(2.6.1).
2. We shall extend this theorem to general finite groups in the following.

6.5.1. Theorem (Cauchy’s Theorem):
Let G be afinite group and p be a prime number. If P | O(G ) , then G has an element of order p.

Proof : Suppose that p | 0(G).ThenO(G)>P.

We shall use induction on O(G) to prove the theorem. Since O(G ) > P, we can start
induction at p. If O(G) = p, then G is a cyclic group of order p and henceevery nonidentity
element of G is of order p. Now suppose that O(G) > p and assume that the theorem is true
for all groups of order less than that of G.

Case (i) : Suppose G has a subgroup Hand O(H) < O(G) and p | O(H). Then by our induction
hypothesis, H has an element b(say) of order p. Now p € G and O(b) = p.

Case (ii) : Suppose G has no subgroup H such that O(H) < O(G) and p | O(H) Take the class
equation of G; O(G) = X %) \where the sum runs over one element ‘@’ from each

giF{ah
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conjugate class. This can be written as
0(G)= 0[Z(G+ Ty a1 2 oo — (1)

(@) 2G gk ia)

By our supposition, p | O(N (a)) for N (a) # G. So, N (a) = G, p |— and that P!
2y ::ﬂ:,ﬁg%smce p | O(Gjand P | Zy (o _Gg -, by (1), we have that p | O(L(G))

So, by our supposition, O(Z (G)) < O(G) and that O(Z(G)) = O(G) and hence Z(G) = G
This shows that G is abelian. Therefore by Cauchy’s theorem for abelian groups, G has an
element of order p. This completes the induction and hence the theorem.

6.5.2. Self Assessment Question : Prove that there exists an element a # e in a group oforder
793 such that a® = e.

6.5.3. Self Assessment Question : Prove that any group of even order has an element a # e
such that a2 =

6.6: CONJUGATE CLASSES IN Sp;:

In this section, we use several results on the conjugate classes to determine all the conjugate
classes in the symmetric group Sy,. Let us recall that the elements of Sy, are the permutations on

the set I, = {1,2,..n} and that any nonidentity permutationis a product of disjoint cycles, each

of length > 1 (See theorem 4.3.7). In fact, wehave defined an r-cycle only when r > 1(see
definition 4.3.1). Now, let us agree, for convenience, that 1-cycle is defined to be the
identity map(identity elementin Sj). With this convention, we can rephrase theorem 4.3.7 as

given in the following.

6.6.1. Theorem : Any permutation f in Sy can be written as f = a1. 2. a3 ... ax where a; IS
acycle of length ri, 1<i<kwithri<r<...<rcand ri+r2+ ... + re =n. (In other words,
any permutation in Sy is a product of disjoint cycles)

Proof : Let f €S,

Suppose f is the identity permutation in Sp.Then f can be written as product of n number of
1-cycles, (i.e., f=(1) (2) (3) ----- (n)) each of which is a cycle of length 1, and hence we are
through.

Suppose f is not the identity permutation in Sn. Then by Theorem 4.3.7, f can be written
asf=ao.op.......... ax, Where each o is a cycle of length si > 1, 1<i < k. Observe that, for

any a € In, ()f #a < ()i # a for some iwith 1<i<kand (a)oj =aforj=i.
Write T ={ae |l /(a) f=a}. Since T is finite, we can write Tas T ={asa....... Jat}

Now f = (a). (a2)....... (&) a1 @ ..........aw Since ¢’s are disjoint, they commute with
each other and hence we can rearrange a. @ .......... ay, such that their lengths are in
increasing order.

Also, for any a€ Iy, (a)f = a < ais involved in some ¢j , 1<i<k. Thereforef=41. B ........
P01y ......... a: Where each Bi is a cycle of length 1, and ¢ is a cycle of length si, 1 < i

kwithl<1<..... <1<s1<8< ..., <skand 1+1+....... +1+ S1+S2+....... + Sk =
+(n-t)=n.

IA
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6.6.2. Definition: Let n be a positive integer. A finite increasing sequence of positive integers
whose sum is n, is called a partition of n; that is, a finite sequence {r, ra ...... , I } of
positive integers is called a partition of n if (i) ry1<rz < <rg,and (iiyri+r2+ + =N

The number of partitions of n is denoted by p(n).
6.6.3. Examples :

p(1) =1, since {1} is the only partition of 1.

p(2) = 2, since {1, 1} and {2} are the only partitions of 2.

p(3) =3, since {1, 1, 1},{1, 2} and {3} are the only partitions of 3.
p(4)=5,since{1,1,1,1},{1,1, 2},{1, 3}, {2, 2} and {4} are the only partitions of 4.

6.6.4 Theorem : The number of conjugate classes in S, is p(n), the number of partitions of n.
Proof : We shall exhibit a one-to-one correspondence between the conjugate classes in S, and

partitions of n. Any f € Sy can be expressed asf =¢. @.........ac \Where each ¢ is a
cycle of length rj withnp<np<......... <peand rp+rp + o + 1 = n(see theorem
6.6.1) ; thatis, {ri,rz....... ,rk} is a partition of n. Further , by the uniqueness proved in Theorem

5.3.7, any representation of f as product of cycles yields the same partition of n. We call this
unique partition as ‘the partition induced by f. Now we prove the following :
(i) Forany f , g € Sy, f is a conjugate of g if and only if both f and g induce the same partition of

n.
(i) Any partition of n is induced by some f e Sy, . These two give us a bijection C(f)— the
partition induced by f of the set of conjugate classes in S, onto the set of partitions of n.

i) Letf,geSysuchthat f~g. Thenf=h?.g.h forheSy. Supposeg=e1. @ .........0c -==---
(I) where ¢; 's are cycles of length ry withrp < <....... <ikand ri+rz+———+rc=nThen { In,r,

..... T} is the partition of n induced by g. We shall prove that the same partition is induced by
f also ; that is, f has a similar representation as in (1) for g, which yields the same partition

{rre...., N}

Now f =htogoh=(hYoa; ohp(htoa, ohp----o(hroae oh).

Therefore, f = Lo B0 ....... Bcwhere gi=h'ig oh V1<i<k.

If the cycle ai = (as, az, ...... ,a,) then, clearly, h*ugj oh =((a1)h, (a2)h,....,(a,;) h) which
is again a cycle of lengthri v 1 < i<k,

Thus {ru 12 ...... .1} is the partition induced by f also.

Conversely, suppose that both f and g induce the same partition {r, r,...... T}

Then f and g have representations of the form f = e 0o....... 1o and g = frofeo....... 0 Sk
where ¢j and fj are cycles, each of length , rj, 1<i<kwithrp<n <. ... <nandr+n +.o... +

Ik =n.Forl<i <k, write ai=(a;,a;, ... ,a; )and Gi= (8,5, ...... , ﬁe,[)- Then
{a;}= {12, ..... ,n} = {bij.}, and for any i = J, the set {a; , a;_, "-""’-“f.—[} and {a; , a;_,
...... , “}'.—;} are disjoint (* ai and ¢ are disjoint cycles). Similarly {b; , b;_, ......, b;_}and
B by, , by, ;yare disjoint cycles.

Now, define h:{1,...... N4 ... ,n} by(aiJ__ )h:biJ__}.ThenheSn and h*y foh =g, so
thatf ~g.
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i) Let {r,r, .......r, } be a partition of n. Then 0<r <r, ...... <randr +r, +. +r1,=n.For
1<i<k,writea=(fa+161+2,. ... ,fiat 1), where I, = 0. Then each «; is a cycle of length
. Putf =e 0a,0...... 14, Then f is a permutation in S, which induces the partition {r, r,
PR I}

This completes the proof.

6.6.5. Self Assessment Question : If a = (ai,a,...... ,ar)isacycleinSpand he Sy

Prove that h* oz h is the cycle (a1 )h, (a2 )h,...... , (ar)h).

6.6.6. Self Assessment Question : How many conjugate classes are there in each of Sy, Sy,
Ss, Sa, and Ss.

6.7. MODEL EXAMINATION QUESTIONS :

6.7.1. State and derive the class equation of a finite group.

6.7.2. State and prove Cauchy’s theorem for finite groups.

6.7.3. Prove that any group of order p? is abelian, where p is a prime.

6.7.4. For any positive integer n, prove that the number of conjugate classes in Sy, is

equal to the number of partitions of n.

6.8. EXERCISES :

6.8.1. If N is a normal subgroup of a group G and ae N, Prove that C(a)c N.

6.8.2. If N is a normal subgroup of a finite group G, Prove that O( N ) = >.Ca for some choices of
ainN.

6.8.3. If in a finite group G, an element a has exactly two conjugates, prove that G has a normal
subgroup N # {e}, G.

6.8.4. Find all the conjugate classes in S and verify the class equation for S3.

6.8.5. List all the conjugate classes in Sy, find the C5’s and verify the class equation

6.8.6. Find all the conjugate classes in A and the number of elements in each conjugate class,
where Ag is the alternating group of degree 5.

6.8.7. Exhibit two elements in Ag which are conjugate in Sg, but not in Ag,

6.8.8. Prove that Ag is simple.

6.8.9. If o(G) = p? where p is a prime, prove that G has a subgroup of order p" forallo<n<r
(use theorem 5.4.1).

6.8.10. For any group G, prove that G is abelian if and only if G/ Z(G) is cyclic.

6.8.11. Prove that any group of order 15 is cyclic.

6.8.12. Prove that any subgroup of order p™* in a group G of order p" is normal in G, where p
is a prime number.

6.8.13. Prove that any group of order 28 is not simple.

6.8.14. Find the number of conjugates of (1 2) (3 4) is Sp, N 24
6.8.15. If O(G) = 28 and G has a normal subgroup of order 4, prove that G is abelian.

6.8.16. If H is a proper subgroup of a group G of order p", where p is a prime number, prove
that there exists x e G such that x ¢ H and x*Hx = H
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6.9 SUMMARY

In this lesson, you have learnt the concept of conjugacy relation on a groupG and, for
any a € G, the conjugate class C(a) and the normalizer N(a) and provedthat C(a) is bijective
with the set of right cosets of N(a) in G. Using this, we havederived the class equation of a
finite group which is a crucial tool in proving the Cauchy’s Theorem for a general finite
group. Also, we have proved that the centreof a group of prime power order is nontrivial and
deduced that any group of order p? is abelian if p is a prime number. Further we have determined
the conjugate classes of the symmetric group S, by proving that the number of conjugate

classes in Sy, is equal to the number of partitions of n.

6.10 TECHNICAL TERMS

e Conjugacy relation, conjugate class, normalizer of a class equation, Cauchy’s theorem
for finite groups, partitions of n.

6.11 ANSWER TO SELFASSESSMENT QUESTIONS:

6.2.3. a~b=a=c'bcforsomec e G
= a=c*ch = b (since G is abelian)
a=b=a=¢e'he=avb
6.210. xe Z(G)«<xa=axforallae G xe N(a)foralla eG
S Xxelly,zgN(a)
6.4.2. Let G be a group of order 625. Then O(G) = 625 = 5% = p" where p = 5 is a prime
number and n = 4. So, by theorem 6.4.1, the centre Z(G) is nontrivial.
6.4.4. 169 is of the form p? where p = 13 is a prime number Now use Theorem 6.4.3.
6.5.2. Let G be a group of order 793. Then O(G) =793 = 61x13. Now 61 divides O(G) and
61 is a prime number. So, by Cauchy’s Theorem (6.5.1), G has an element of order 61.
Therefore there exists a = e in G suchthata® =e.
6.5.3. Similar to 6.5.2; for, if G is a group of even order, then 2 divides O(G) and 2 is a prime
number.
6.6.5. Let o = (ag,...... ,ar)he Sy and B =((ag)h, (ag)h,...... , (ar)h).

Now we prove that oo b =hop.
Foranya e Iy,

(t;sq) ifa=a,i<r
(a)(hoB) = ((@)h)B = 4 (ai)h ifa=a,  =(a)(arh)
(a)h if a= a,, 1<i<n

This shows that h o = oco hand hence htozoh = .

6.6.6. Follows from 6.6.4 and from the facts that p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5 and
p(5) = 7. The number of conjugate classes in Si, S, S3, Saand Ss is 1, 2, 3, 5 and 7,
respectively.

6.12 SUGGESTED READINGS:

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.

Dr. K. SIVA PRASAD



LESSON -7
SYLOW’S THEOREM

OBJECTIVES:
The objectives of this lesson are to

X/
X4

L)

prove that the Sylow’s theorem in three different methods.

define the notion of a p-Sylow subgroup and prove that any two p- Sylow subgroups
of a group are conjugate to each other.

% prove that the number of p-Sylow subgroups of a group G is a divisor of O(G) and is
of the form 1+kp, k > 0.

X/
°

X3

STRUCTURE:

7.1. Introduction

7.2. The first proof of Sylow’s theorem
7.3. The second proof

7.4. The third proof

7.5. Sylow’s theorem - II

7.6. Sylow’s theorem - 1lI

7.7. Model examination questions

7.8. Exercises

7.9 Summary

7.10 Technical terms

7.11 Answers to self assessment questions
7.12 Suggested Readings

7.1. INTRODUCTION:

Lagrange’s theorem tells us that the order of a subgroup of a finite group is a divisor of
the order of that group. The converse of this theorem is not true; thatis, for any divisor m of
O(G), there may not exist any subgroup of order m in G. For example, there are no subgroups
of order 6 in Ay, even if 6 is a divisor of O(A,4). There are very few theorems which assert

the existence of subgroups of prescribed order in arbitrary finite groups. In this direction, a
classic theorem due tothe Norwegian mathematician Sylow is the basic and widely used one.
We present three proofs which are of completely diverse nature.

7.2: THE FIRST PROOF OF SYLOW’S THEOREM:

In this section, we present an elegant and simple elementary proof of Sylow’s theorem
which uses certain basic ideas from number theory and combinotories. For any positive
integers n and k with k < n, the number of ways of picking a subset of k elements from a set

. ny n!
of n elements is equal to () = 77—

7.2.1: Lemma: If n= p*m, where p is a prime number, p"|m and p"*'t m then p'| (”:.;”)
+1 a ™m
and p’ l(“pa )

o (u® m)t
. o m)!
Proof : Now (p ;n) = o o
P =) ip" m—p= )
" mip"m-1———(p" m—i)——— (p" m—p" +1)
pHp¥ -1 ———(p¥— i ———(p% —p%+1)
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On the right side of the above equation, it can be easily seen that except for the term m in the
numerator, any power of p dividing (p“m — i) is the same as that dividing p* —i.

So, on the right side of the above equation, all powers of p are cancelled out except the
power which divides m.

r ®m r+l T m
Therefore, p”| (*’px ) and p™ ¢ {*’px )
7.2.2: Self Assessment Question: In the above, verify that for any B < o, p* | p*m —i <
p? | p® i
7.2.3: Theorem (Sylow’s Theorem - 1):
Statement: Let G be a finite group, p be a prime number and « be a nonnegative integer. If

pa| O(G), then G has a subgroup of order p=.

Proof: Since pal O(G), we have that O(G) = pam , Where m is a positive integer.
Hence the prime p may or may not divide m.

Let pr be the largest power of p that divides m.
Then we have r> 0, p'| mand p"** § m.

Let M be the set of all subsets of G each with pa elements.

The number of elements in M is ("Pi"‘), which is divisible by p" and not divisible by p™* (by
lemma7.2.1).

Define arelation ‘~’ on M as follows:

Forany A, B € M, A~ B << A = Bx for some x €G.

It can be easily verified that “~’ is an equivalence relation on M as follows:

For Ae M, let A denote the equivalence class containing Ain M and | 4| denote the number of
elements in A. Since the equivalence classes form a partition of M,

we get that (”:J”) = M| =ZI4] = (1)
g% m

Since p™! does not divide ( e ) by (1), it follows that p™* does not divide |A] for some

equivalence class A.
Let A = {Al’ A2,....,An}.
Now A ~A, for all i and p"* n.
PutH={geG|Ag = A}
Then H is a subgroup of G.
We prove that O(H) = pa
Since A~ A;, we have that A; = Ag; for some gijeG and 4 = {Agq, Agy,..., AQp}
Let us consider the right cosets Hg;, fori=1,...,n.
For i, j with 1<i, j<n,
Hgi= Hgj< gig;' e H
o Agig;t =A
< Agj =Ag;
Si=j
This shows that Hgq, Hgo,.......... , Hgy, are all the distinct right cosets of H in G
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Suppose Hg is a right coset in G where geG. We have Ag ~ A
= Ag = Ag; for some i with 1<i<n

= gig_1 eH for some i

— Hg = Hg; for some i.

So, Hg is one of Hg;, 1 < i< n. Therefore Hgq,Hgo .......... , Hgp, are only distinct right cosets of
HinG.

Since Hgi, 1<i< n form a partition of G, it follows that p#m= O(G) = n.O(H)
As p'im, p#"| pm=n.0O(H)

Since p™* t nand p#" | n.O(H), it follows that p% [o(H) — (2)

If acA, then for all heH, ahe Ah = A

This implies that A has atleast O(H) number of elements.

Since AeM, p? =|A20(H) - (3)

From (2) and (3), (OH) = p«

Thus there exists a subgroup H of G of order p~

7.2.4. Self Assessment Question: In any group of order 2500, prove that there is a
subgroup of order 125.

7.2.5. Corollary: Let G be a finite group and p be a prime number. If p™ | O(G) and
p™?! 4 O(G), then G has a subgroup of order p™.

Proof: This is an immediate consequence of theorem 7.2.3. The above corollary has an
importance, even though it is a direct consequence of theorem 7.2.3. The reason is that 7.2.5
implies 7.2.3 (see 7.2.6 and 7.2.7, given below). Therefore, in order to prove the main
theorem, the Sylow’s theorem-1, it is enough if we prove 7.2.5. This is what we are going to
do in the second proof and third proof given in the next two sections.

7.2.6: Self Assessment Question: Let G be a group of order p" where p is a prime number.
Then for each Q< r <n, prove that G has a subgroup of order p".

7.2.7: Self Assessment Question: In any group of order 405, prove that there is a subgroup
of order 81.

7.2.8: Definition: Let G be a finite group and let p be a prime number such that

p™ | O(G) and p™!}tO(G). Then any subgroup of G of order p™ is called a p-Sylow
subgroup of G.

7.3: THE SECOND PROOF:

As it is mentioned in the introduction to this lesson, we present another proof of the Sylow’s
Theorem-1 which is completely different from the first proof givenin the previous section
and is based on induction on the order of the given group.

7.3.1: Theorem: Let G be a finite group and p be a prime number. If p™ | O(G) and
p™?! } O(G), then G has a subgroup of order p™

Proof: If m = 0, then G has the subgroup {e}, which is of order p™. Suppose m isa positive
integer.

We prove the theorem by using induction on O(G). As p™ | O(G) and m > 0, O(G) > p. So, we
start induction at p.

If O(G) =p, then G itself is a subgroup of order p", where m = 1. Suppose o(G) > p and assume
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that the theorem is valid for all groups of order less than o(G). Consider the center
Z(G) ={a G | ax = xa for all x € G} which is a normal subgroup of G.

Case (i) Suppose p | O(z(G))

Now Z(G) is a finite group whose order is divided by p.

So, by the Cauchy’s theorem (2.11.3), Z(G) has an element of order p. Let acZ(G) such that
axeadaP=e.

Put N = (a), the subgroup generated by a.

Then N is a normal subgroup of G (< xa'x* =a' for all xeGanda e N)

and O(N) =p (+ 0(a) =p)

So, we can form the quotient group G/N.

As p= 0, O(G/N) = g—fz =22 < 0(6)

Also, since P™ | O(G) and p™! ¢t O(G), it follows that p™?*| O(G/N) and p™ + O(G/N).
. by the induction hypothesis, G/N has a subgroup, say A of order p™*

Let H = {xeG/Nxe H)}

Then H is a subgroup of G containing N as a normal subgroup and H/N = H

Now O(H) =222 O(N ) = O(%).0(N)=0 (H).O(N)=p™Lp=p"

Thus 3 asubgroup Hof order p™ in G.

Case (ii) Suppose p t+ O(Z(G))
Take the class equation O(G) = X

element a in each conjugate class.
The above class equation can be written as

0O(G) = 0(Z(G)) + 2~ 98 _\yhere 1,89, 0veverneies .a, are elements such that C(a1),...,C

=1 o(n(a;))
(an ) are all the distinct conjugate classes each with more than one element.

We have |T (a)] = aLe)
QN (al)

Since each |C (a;)| >1, it follows that each N(a;) =G, 1<i<n.
As p™ +O(G) where m> 0, P | O(G).

L .
——— where this sum runs over one
QN (al)

for a=sG

Since p | O(Z(G)), we get that P} Oij:,? for some i
(1 il
m oGy .
=p™ } oin(a) for some i
. ': 1] i
Since p™ | 0(6) == .0(N(a,)) and p™ + —==— , we have p™ | O(N(a,)
o(Nia;)) GiN(a;l)

Also, O(N(ai)) < O(G). As p™t O(G), p™*t O(N(a)).
So, by the induction hypothesis, N(ai) has a subgroup of order p™. But anysubgroup of
N(ai) is a subgroup of G also. Thus G has a subgroup of order p™.

7.3.2: Theorem (Sylow’s Theorem —I):

Let G be a finite group and p be a prime number. If p%| O(G), then G has a subgroup of
order p%

Proof: Let m be a non-negative integer such that p™| O(G) and p™* + O(G).Then by

theorem 7.3.1, there exists a subgroup K of order p™ in G
But, given p* | O(G)
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So, a <mand p*| O(K)

Therefore, by 7.2.6, K has a subgroup H of order p<.
This implies that H is also a subgroup of G of order p<.

7.4: THE THIRD PROOF:

In this section we present another proof of the Sylow’s theorem which is completely
different from either of the two earlier proofs. Here we shall first prove that the symmetric
group S_x or degree p* has a p-Sylow subgroup and later prove that, if G and M are finite

groups such that G M and M has a p-Sylow subgroup, then G has a p-Sylow subgroup.
Finally we shall use the Cayley’s theorem to get a sufficiently large K such that G is
embedded in S_x. Recall the order of S x is (p*)!

7.4.1: Definition: Let p be a fixed prime number. For any positive integer k, n(k) is defined
to the the positive integer such that p"® | (p*) ! and p"®** t (p¥)!. In other words, p"® is the
largest power of p that divides (p*)!

7.4.2: Lemma: For any positive integer k, n(k) = Z¥_, p't = 1 + p+p*-....+ p¥L.

Proof: We shall use induction on k

If k =1, then (p)! = p! = 1.2...(1-p).p.

Since p | pland p? tp !, n(1) =1

Now, let k >1 and assume that the lemma is true for k—1.

Then we have n(k-1) =1 + p + p?+ ... + p*2.

It is clear that only the multiples of p, that is, p, 2p,..., p*1.p are divisors of (p¥)!
So, n(k) must be a power of p which divides

P2p)3p)..- (P p)pF(pF !
Therefore, n(k) = p*1+ n(k-1) = p*1 + p*2+ ...+ p+1.

7.4.3: Lemma: For any prime p and positive integer k, the symmetric group 5« has a
p-Sylow subgroup.

Proof: Let p be a prime number and k be a positive integer. We have to prove that 5k has a
subgroup of order p"®@where n(k) = 1 + p + p?+...+ pk™.

We shall prove this by using induction on k.

If k = 1, then the cycle (1 2 ....... p) is an element of order p in 5, and so it generates a
subgroup of order p = p"® (since n(1) =1) in 5. Therefore, the lemma holds good for k = 1.
Now, let k >1 and assume that the lemma is true for k = 1. Then 5 - has a subgroup of
order p"k-D-

Let us divide the integers 1,2,3,..., p¥ into p clumps, each with p** elements as follows:

{1,2,3,......... PP+ 1, Pt + 2, 2P AE-D) Pt + 1, (p-1) pft + 2,
P}

Consider the cycles 21,2 .............. O s defined by

a :(lpk'1+1,2pk’1+1, ............... J(p-1. p*t+1)

@ =Qpt+2,2p M +2, (p-1). p*t+2)
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. . - .- "'_.'l _ - -
Clearly @1, 0 .o » & k-2 are disjoint cycles, each of length p and hence a; = e, identity and

Y. = qx.0 ;o k-1
apa; = aga forall1<i,j<p* .

Putc=outaat......... 1a,k-2. Then o P = e and o satisfies the following property:

If ges_x such that g(i) = i for all i > p*~*, then 0 7ga?(i) = i for all i e{ jp*'+1, jp*'+2,
oo (14 1) P

Let A={9¢€5s x|g(i)=iforalli> pk1}

Then Ais a subgroup ofsp;..r.

Also, the mapping g = g/ -1 gives us an isomorphism of A onto 5 x-. and hence
Az 5 k-1,

By the induction hypothesis, A has a subgroup B; of order p"®):

For 2< j<p, write Bj = c_('_l)Blc'_l and B = By B.......Bp

Each B is isomorphic to B: and hence o(Bi) = o(B1) = p"® v i

Also, for any i #j, BiBj = BjBi (since Bj(s) s = Bj(s) =)

Therefore, B is a subgroup of 5 k.

Also, since Bj N Bj = {e} fori ], it follows that
O(B) = 0(B1)O(B») ......... O(Bp)

— nlk—1) __nik—1) nik-1) — _nlk—1lp
= D SO =p

Further, since 6 ? = e and Bi = ¢ (-YB; 6 "%, it follows that ¢ 'Bo = B.
letH={c'b|beBand0<j<p-1}.

Since 6 ¢ B and ¢ ! Bo = B, we get that H is a subgroup of 5k and O(H) = p.0O(B) = p.
pn(k -1)p—= pn(k 1) p+l — pn(k)

Thus there exists a subgroup H of order p"® in 5 _x.

7.4.4: Self Assessment question: Prove that H, defined in the above proof isa subgroup of 5 k.

7.4.5: Self Assessment question: Prove that n(k—1).p+1 = n(k).
Before we reach the third proof of the Sylow’s theorem, we need the following
terminology.

7.4.6: Definition: Let G be a group and let Aand B be subgroups of G. For any xeG, let AxB =
{axb |acAand beB}. Then Ax B is called a double coset of A, B in G.

7.4.7:Lemma: Let G be a group and let A and B be subgroups of G. Define a binary relation
~on G as follows:

For any X,y €G, x~y <y =ax b for some acA and beB.

Then ~ is an equivalence relation on G and the equivalence class of xeG isthe set Ax B =
{axb|aeA, beB}
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Proof: Let x, y,z €G
() x~xasx=exeeec AnB

(i) Suppose that x ~ y
Theny =a x b for some acA and beB
Now ay = xb and x = ayb™!, where a‘eA and b*eB. So, y~x.
(iii) Suppose that x ~y and y~z
Theny=aq xbq and z = agyb, for some aj, apoeAand by, byeB
Now z = az yb, = a, (a 1xb1) bz = (a2 a1 )x(b1 b2 ) where a2, a1 €A and by, b2 €B. So, x~z
Therefore, ‘~’is an equivalence relation on G.
If [X] is the equivalence class containing X, then
[X]={yeG [x~y}

={yeGly=axbh,acAbeB}

={axblacA, beB}

= AxB

7.4.8 Lemma : If A, B are finite subgroups of a group G and xeG, then the number of
elementsin the double coset A x B is given by

0 A)O(E)
of Ar(xBx—1Y)

|AXxB|=

Proof: Let xeG

Now we show that the sets AxB and AxBx* have the same number of elements.

Define f: Ax B - A x Bx* by f(a x b) = axbx *for all axbe AxB where acA and beB.
Suppose that f(aq xbq) =f(ap x by) where aj,anoeA and bq,byeB.

Then we have a; x byx™* = apx box™

This implies that a; x by = apx by (by right cancellation law) So, f is one - one.

Let yeA x Bx!
Then y = axbx ! for some acA, beB

Now axbe AxB and f (ax b) =axbx!=y. So, fisonto Ax Bx ™.
Therefore f is a bijection of Ax b onto A x Bx?!

Hence, A x B and Ax Bx ! have the same number of elements.

That is, |A x B| =|Ax BxY|
Note that xBx is a subgroup of G as B is a subgroup of G and O(B) = O(xBx1). Therefore,
IAX Bl = | Ax BxY

=|A. (xBx7)|

_eldle(xBa™h)

- olAn(xBx—"))

_ oldhe(B)

T oeldn(xBe"i
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7.4.9. Self Assessment Question: For any subgroups A and B of a group G, prove that any
two distinct double cosets are disjoint and that, if G is finite,

n T o(4).0(E)
O(G)=2i=y|Ax:Bl = Xiny 5 e
7.4.10. Lemma: Let G be a subgroup of a finite group M and p be a prime number.Suppose

that M has a p-Syllow subgroup Q. Then G has a p- Sylow subgroup P. In fact, P = G n
xQx* for some xeM.

Proof: Suppose that M has a p-Sylow subgroup Q. Then O(Q) = p™ where p™ | O(M) and
p™1 tO(M) — 1. We shall prove that G n xQx?is a p — Sylow subgroup of G for some
xeM.

Suppose p" | o(G) and p™! { O(G).

Then o(G) = p".k for some integer k with p { k

Now we have to prove that O(G n xQx*) = p" for some x eM

Consider the double cosets G xQ of G, Q in M. Since the double cosets from a partition of M,

we have o(M) = ¥ |Gx@| where the sum runs over one element x form each double coset of
G,Qin M.

eleha(g) _  (kE™p™)
e(Gn{xQx"") T sienlxgae))

By Lemma 7.4.8, we have | GxQ | =

Observe that G nx@x~* is a subgroup of xQx?, and is a subgroup of G, and O(xQx?) =
O(Q) = p™= and that o(G n xQx! ) = p™x for some integer 0 < my<mand 0 <my <n.
S0, 16xQ| =~

. . i"l.I m . ) )
If my < n for all x, then p™** | k:Ti = |GxQ| and that p™*! | £ 6xQ = 0(M), which is a
contradiction since p™*! { O(M) .

So for some xe M, my= n and that for this x, O(G n xQx*) = p"
Therefore, P := G nxQx!is ap - Sylow subgroup of G.
In the following we present a third proof of the Sylow’s theorem.

7.4.11: Theorem: (Sylow’s theorem I):

Let G be a finite group, p be a prime number and « be any positive integer. If p% | O(G),

then G has a subgroup of order p%.

Proof: Leto(G) = n. Consider the symmetric group of degree n, Sy,. By Cayley’s theorem (4.3.1),
G can be regarded as a subgroup of S,; Choose k such that n < . Now I, ¢ L and hence

any permutation on I, can be regarded as a permutation on |pk (see 4.2.5). Therefore, S,

can be regarded as a subgroup of 5 i and hence G is a subgroup of 5% By lemma 7.4.3.
5k has a p-Sylow subgroup. So, by lemma 7.4.10, G has a p-Sylow subgroup. Let P be a a

p-Sylow subgroup of G. Now O(p) =™, where 2™ | O(G) and 2™*  o(G). Since p“ | 0(G),
a <m. So, by 7.2.6. P has a subgroup of order p* which will be a subgroup of G also.

7.5: SYLOW’S THEOREM:
Let G be a finite group. If P is a p-Sylow subgroup of G, then for any xeG, xPx! is also
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a p-Sylow subgroup of G, since O (xpx1) = O(p). In the following,we shall prove that any
other p — Sylow subgroup of G must be of the form xpx for some xeG. Let us recall that
two subgroups H and K of G are said to be conjugate if H = xkx* for some xeG

7.5.1: Theorem (Sylow’s Theorem 11):

If G is a finite group, p a prime and p" | o(G) but p™! {O(G), then any two subgroups
of G of order p" are conjugate.

Proof: Let P and Q be subgroups of G, each of order p"; that is, P and Q are p—Sylow
subgroups of G. We have to prove that P = xQx! for some x€G. Double coset
decomposition of G with subgroups P and Q is given by G = U PxQ where the union runs over
one element x from each double coset.

Now, O(G) = 3| PxQ | where the sum runs over one element x from each double coset.

For any xeG, we have (by 7.4.8)

0(PLo(Q) ptp"
PxOl|=— 0 = — .
PRIZSs x| o0 )

Observe that p N (xQx?) is a subgroup of P and is a subgroup of xQx ! and that O(p m(XQX_1 )
=p™* for some 0< ny <n.

mn_mn
PP

So, for any xeG, |PxQ| = e

If nx < n forall x, then p™! | % = |pxQ| for all x and that p™* | 3| PxQ| = O(G)

which is a contradiction to the fact that p™* + O(G); So, nx = nfor some xeG.
Therefore, O( p N (xQx1)) = p" = O(p) and

Hence p N (xQx )= p and that p ¢ (xQx™)

But O(P) = O(xQx )= p". So, P = xQx?

Thus there exists xeG such that p = xQx !

Hence P and Q are conjugate.

7.5.2. Self Assessment Question:

Determine all 2-Sylow subgroups of Sq and A4.

7.5.3. Self Assessment Question:
Prove that a p-Sylow subgroup is normal if and only if it is the unique p-Sylow subgroup.

7.5.4. Definition: Let G be a group and H be a subgroup of G. Then the normalizer of H in G,
denoted by N(H), is defined as N(H) = {geG|gHg ™ =H}.

Note that if H is a subgroup of G, then N(H) is a subgroup of G, and H is anormal
subgroup of N(H).

7.5.5. Lemma: Let G be a finite group and p be a prime number. Then the number of p-Sylow
subgroups of G is equal to O(G) / O( N (P)) where P is a p-Sylow subgroup of G. In particular,
this number is a divisor of O(G).

Proof: Let P be any p-Sylow subgroup of G and let X be the set of all p-Sylow subgroups of G.
Then, by Sylow’s theorem Il (7.5.1) we have

X={xpx! | xeG}
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It is easy to see that the mapping xpx* — N(P)x is a bijection of X onto the set of right
cosets of N(P) in G.

So, the number of p-Sylow subgroups is equal to the index of N(P) in G which is same as
O(G) / O(N (P)) and this divides O(G).
7.5.6 Self Assessment Question:

Prove that the number of p-Sylow subgroups of a group G is a divisor of the index of a p-
Sylow subgroup in G.

7.6. SYLOW’S THEOREM - II1:

In the previous section, we have proved that the number of p-Sylow subgroups of a group G
is adivisor of O(G). The following gives us more information about this number.

7.6.1 Theorem (Sylow’s Theorem-I111) : Let G be a finite group and p be a prime number.
Then the number of p-Sylow subgroups of G is of the form 1+pk for some integer k >0.

Proof: Let P be any p-Sylow subgroup of G. Then O(P) = p" where p"|O(G) and

p™! + o(G). Consider the normalizer of P in G, N(P). By lemma 7.5.5, the number of p-Sylow
a{GE)

oN(En

Now we show that the number of p-Sylow subgroups of G is of the form 1+pk forsome integer

k >0. Consider the double cosets pxp, xeG.

subgroups of G is equal to

Suppose px1p, PXoP, «eevreee. , px;p are all the distinct double cosets in G where x;eG. For
1=1,2, e, T

Since these form a partition of G, we have 0(G) = X7_, |Pxi P|

We can assume that X, , X, .......... X e N(P)and X, , coeveeee. Xr ¢ N(P).

Observe that xe N (P)<> xPx! = P < xP = Px.
So, for x e N(p), PxP = Px a right coset of p in N(P), and o(PxP) = o(Px) = o(P) = p"
Also, xgN(P) < xPx!# P < P n(xPx1)# P

So, for xg N(P),O(P m[xPx'1 )= P" X for some 0 ¢ nx < n therefore for xg N(P),
|P:XTP| _ ,GI\%:IIGI:J? — g — pf:lz—:ux and 2n_nx =n+l
QiPnlxpx™")) ptx

This implies that p ™| |pxp| for every x¢ N (P)
Now 0(G) = =, |Px; P| = Xi=y |Px; P| + =14y |Px; P
= Ip"+ p™L.k for some integer k >0.
Let xe N(p). Then Px = PxP = Px; P for some 1<i<r.
This shows that every right coset of P in N(P) must be of the form Px; for some 1< i <|. So, there are
exactly | number of distinct right cosets of P in N(P),
As x; € Px; P, x; € Px. So, x1x; € P c N(P)

which implies that X;eN(P) and hence 1<i<|.
| = the index of P in N(P) = "";";':” _ GI:EELP”-

Therefore, O(G) = O(N(P)) + p"*.k
(Or)
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0(6)
O(N(P))
Hence, the number of p-Sylow subgroups of G is of the form 1+pk for some k> 0.

In the following examples, we shall demonstrate how these three Sylow theorems
can be used to know about the structure of finite groups.

=1+pk

7.6.2: Example : Let G be a group of order 112.132. We shall show that G is abelian.
By 7.5.6 and 7.6.1, the number of 11- Sylow subgroups of G is of the form 1+11k for some
integer k > 0 and (1+11Kk) | O(G) . It is clear that (112, 1+11k) =1. So, (1+11K) | O(G)= 112.13?

implies (1+11k) | 132 only for k = 0, 1+11k divides 132, So, the number of 11-Sylow
subgroups is 1+11(0) =1.

Also, the number of 13-Sylow subgroups of G is 1+13k for some integer k > 0 and
(1+13Kk) | O(G). As (13?%, 1+13k)=1, (1+13k) | O(G) = 112.132 implies (1+13K) | 112, Only
for k =0, 1+13k divides 112. So, the number of 13-Sylow subgroups is1+13(0) =1.

Let H be the 11- Sylow subgroup of G of order 112 and K be the 13-Sylow subgroup of G

of order 132 Since each conjugate of H is a 11-Sylow subgroup of G, H is a normal
subgroup of G. Similarly, K is a normal subgroup of G.

Since O(H nK)is a common divisor of 112 and 132, O(H nK)=1; that is, H "K = {e}.
So, [HK]| = olHlo(E) _ 11713 0(G
' ~ oEnk) 1 (6)
Therefore, G = HK
Further, forany xe H,y € K, we have
xyxy 1= (xyx™1) y ek (+ Kis normal)
=x(yxy 1) eH (-~ H is normal)
and hence xyxy* e H n K = {e}. This implies that
xyxty! = {e} and that xy = yx
Thus xy = yx forall xeH and yeK
Let g1, 9o€G. Now gq=Xqy1 and gy = Xpy, for some X1, XoeH and y1, Yy e K. Observe that
H and K are abelian groups as their orders are of the prime squares
Now g192 = (X1 Y1) (X2 Y»)
= (X1y1%2) ¥2
= (X9 X1) (VoY1)
= (X9Y9) (X1Y1)
Therefore, g19o= 9291
Hence, G is an abelian group.

7.6.3: Self Assessment Question: Prove that any group of order 1225 is abelian.

7.6.4: Example: We shall prove that any group of order 72 is not simple. Let G be a group
of order 72. Then, O(G) = 72 = 23.32. The number of 3-Sylow subgroups of G is 1+3K for some
integer k> 0 and (1+3k) | o(G) = 72. Since (32, 1+3k) = 1, we have 1+3k |23.

The only factors of 8 of the form 1+3k are 1 and 4. So, the number of 3-Sylow subgroups is
1 or 4. If the number of 3 —Sylow subgroups is 1, then there is a unique 3-Sylow subgroup
which must be normal and is of order 32, so that it is a nontrivial proper normal subgroup of G.
Suppose the number of 3-Sylow subgroups is 4. Let P be a 3-Sylow subgroup of G. By

lemma 7.5.5, =<1 = 4: that is , i(N(P)) = 4.

QN (D)
Since O(G) t i(N(P))!, it follows , by theorem (4.4.4) that N(P) contains a nontrivial normal
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subgroup H of G.
AsHc N(P) =G, H isanormal subgroup of G.
Therefore G is not simple.

7.6.5: Problem: Show that a group of order 108 has a normal subgroup of order 3% where
k=2or3.

Solution: Let G be a group of order 108 = 23.3%. By 7.5.6 and 7.6.1, the numberof 3-Sylow
subgroups of G is of the form 1+3k for some integer k >0,and (1+3k) | O(G) = 108. Since
(3%, 1+3k) =1, (1+3k)\2°. Now k=0or 1.

Case (i): Suppose k=0

Then 1 + 3k=1+3(0) =1

So, G has only one 3-Sylow subgroup which must be normal and is of order 32,

Case (ii) : Suppose k =1.

Then 1 +3k = 1+ 3(1) = 4.

So, G has four 3—Sylow subgroups. Let Aand B be any two 3 - Sylow subgroups of G. Now

O(A)= O(B) = 32,

Since ANB is a subgroup of A and B, O(ANB)| O(A) = 32 So, O(A"B)=1or 3 or 3

If O(ANB) =1 or 3, then

IAB| = ola).o@) _ 3938
0(ANE) O(ANE)

Therefore, O(ANB) = 3?

We know that for a group of order p", any subgroup of it of order p™* is a normal subgroup of

it, where p is a prime and n is a positive integer. So, A ~ B is a normal subgroup of Aand B.

Therefore, Ac N(AnB) andB < N (An B), where N (AN B) is the normalizer of AN B in G

and is a subgroup of G.

So, ABc N (AN B). But |AB| = 2422@) _ 353" _ g

O(ANE) 3
We have O(N (AnB))>8Land O(N (An B))|O(G) =2* x3*
Therefore, O(N (AN B))=0(G) and thatN (An B)=G.
Hence, A N B is a normal subgroup of G of order 32.

>0(G) =22 x3* which isa contradiction

7.6.6: Problem: Let G be a finite group of order pg where p,q are prime numbers and p > q.
If gt (p—1), then show that G is cyclic.

Solution: Suppose q t (p—1). We shall prove that G is cyclic. The number of p- Sylow
subgroups of G is of the form 1+pk for some integer k >0and 1+pk | O(G) = pg. Since (p,
1+pk) =1, 1+pk | q.

It is possible only when k =0 as p > q.

So, there is only one (1+p(0)=1) p-Sylow subgroup A of G of order p, which must be normal in
G. The number of g-Sylow subgroups of G is of the form 1+gk for some integer k >0, and
1+gk | O(G) = pa.

Since (q,1+gk) =1, 1+gk | p

Since pisprimeandp>q, 1+gk=1orp

If 1+gk = p, then gk = p -1 and that q | (p—1), a contradictionto q % (p—1). So 1+gk =1; that is
the number of q -Sylow subgroups of G is 1. Thus there exists a unique g-Sylow subgroup B
of G of order g which must be normal in G. Sinceeach of A and B has order a prime
number, both A and B are cyclic and that A = (a) for some exacA, B = (b) for some e+ beB.

Observe that A m B={e} as O(A) =p and O(B) = q are prime numbers with p > q.
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olA).O(E)
OlANE)

Now AB is a normal subgroup of G and O(AB) =
that G = AB. We show now that O(ab) = pqg.
Since A and B are normal subgroups of G and a€A, beB and A ~ B ={e}, we have ab = ba.
Consider (ab) = (ab) (ab)........ (ab) ( pg times)

Y oTo N o

=0O(A) . O(B) =pg=0(G) and

= ed.eP (0@ =p&O0O(b)=q)

—ee=e
Suppose n is a positive integer and (ab)"=e. Then a"b" = e and thata™ =b" € A~ B ={e}
implies a"= e and b"=e. Since O(a) = p amd O(b) = g, p|n andq|n, so that pq |n as (p,q)=1. Thus
n > pg. Therefore, pq is the least positive integer such that (ab)*® = e. This is to say that
O(ab) = pg. Hence G = (ab) is a cyclic group.

7.7. MODEL EXAMINATION QUESTIONS:

7.7.1. State and prove Sylow’s theorem-I|

7.7.2. Define the concept of a p-Sylow subgroup and prove that any two p-Sylow
subgroups of a finite group are conjugate.

7.7.3: State and prove Sylow’s theorem - |11

7.7.4: Prove that the number of p-Sylow subgroups of a finite goup G is a divisor of

O(G) and is of the form 1+ pk, k>0.

7.8. EXERCISE:
7.8.1: Prove that any group of order 1986 is not simple.

7.8.2: If G is a group of order 385, show that its 11-Sylow subgroup is normal and its7-Sylow
subgroup is in the center of G.

7.9 SUMMARY::

In this lesson we have learnt the three Sylow’s theorems on the existence of p-Sylow
subgroups of a finite group. Using these Sylow’s theorems,we have determined the structure
of certain group of given orders.

7.10 TECHNICAL TERMS:
e P-Sylow subgroup
Conjugate subgroups

Sylow’s theorems
Normalizer N(P)
Double coset A x B
Simple group
Cyclic group

7.11 ANSWERS TO SELF ASSESSMENT QUESTIONS:

7.2.2:Since B <a,we have p? | p*and pf | p* m. Therefore, pP | p*m—i < pP|p* —i.

7.2.4: Let G be a group of order 2500 = 5*.22. We have 5° | O(G) and 5 is prime. By
theorem 7.2.3, G has a subgroup of order 53=125.

7.2.6: We may assume that O(G) = p" where n €¢E*We shall use induction on n. If n =1,
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then {e} and G are subgroups of orders p° and p* respectively. Now suppose that n > 1 and
assume that the result is true for all groups of order p™, m <n. Then by theorem 6.4.1, Z(G) »
{e}. Since Z(G) is a subgroup of G, O(Z(G)) | O(G)= p" and hence O(Z(G)) = p*, a>o0. Since
p | O(Z(G)), by Cauchy’s theorem, Z(G) has an element of order p. Let e« aeZ(G) and a° =e.

Now (a) is a normal subgroup of G (since ax =xa for all xeG) and G/(a) is of order p". Since p'
|0(G), 0 < r < n, We have p"|0(G/(a)) and hence G/(a) has a subgroup of order p"~*. If K is a

subgroup of G/(a), then the subgroup H defined by H ={x €G | (a) x € K} has order p" in G,
(since H/(a) = k and (a) =p).

7.2.7: This follows from the facts that 81 = 3%, 3%405 and 3 is prime and by theorem7.2.3,
G has a subgroup of order 3* = 81, if o(G) = 405.

7.4.4: Since ¢'Bo= B, we have =7 Bgl =Band hence Bs7 = ¢ /B.
Now for any0< i,j <p-1andbyby €B,
[cr"bl)[ajb:]_i =og'b,b,0 Jea/Bo™!

=Ba'o

-Ba*

=" B for some 0<k < p-1(since oP =e)

Thus H is a subgroup of S k.

7.45:Bylemma7.4.2, n(k) =1+p+p>+t .. +pkt
= 1+p(l+p+p*+......... +p*?)
= 1+ p.n(k-1).

7.4.10: This follows from the fact that the double cosets A x B, xeG, form a partition of G and
by lemma 7.4.8.

7.5.2: (i) O(S3) = 3!=6 and the order of any 2-Sylow subgroup of Sz must be 2. Let
f=(@2,9g=(23)and h= (3 1). Then (f), (g) and (h) are all the 2-Sylow subgroups of S3
(Note that the number of 2-Sylow subgroups of Sz is a divisor of 6 and is of the form 1+2k
and hence it is 1 or 3 ; In this case, it is 3).

(ii) O(As ) =12 and hence the order of any 2-Sylow subgroups is 22 = 4 and there arethree 2-
Sylow subgroups in Ay

7.5.3: Let P be a p-Sylow subgroup of G. Then any p-Sylow subgroup is of the form xpx*
for some xeG. Therefore

P is unique < xPxt=Pforall xeG
< P is normal.
7.5.6: Let P be a p-Sylow subgroup of G and let N(P) be the normalizer of p. We know that the

number of p-Sylow subgroups is equal to G?\Ef;”.
. . _ole) _ olc) oNED . oG]
Since P< N(p), we have i(p) = o7~ o) 0P (since O(p) | O(N(p))) and hence S NTED)

is a divisor of i(P).
7.6.3: 1225 = 52 x 72 and now imitate the argument given in 7.6.2.
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LESSON -8
DIRECT PRODUCTS

OBJECTIVES:
The objectives of this lesson are to

% define the concept of an external direct product of groups and quote certain examples
% define the notion of an internal direct product and prove that any internal direct product
is isomorphic to an external direct product and vice- versa.

STRUCTURE:

8.1. Introduction

8.2. External Direct Products

8.3. Internal Direct products

8.4. Model Examination Questions

8.5. Exercises

8.6 Summary

8.7 Technical Terms

8.8 Answers to self Assessment Questions
8.9 Suggested Readings

8.1. INTRODUCTION:

If (A, o) and (B, #) are any two groups, we can define a binary operation on the Cartesian

product Ax B inanatural way as(a,, b)) . (a, b,) = (a,.a,, b, * b)), and with respect to this
binary operation, A x B becomes a group whose properties largely depend on those of A and
B. In this lesson we discuss certain necessary and sufficient conditions for a group G to be

represented as A x B where A and B are groups again.

8.2. EXTERNAL DIRECT PRODUCTS:

We are already in the habit of using the same symbol ‘+’ to denote the addition of real
numbers, addition of complex numbers, addition of matrices, addition of functions and on
several other occasions. There is no ambiguity if we are aware of what elements are to be
added. Therefore, we have agreed to denote the binary operation on an abstract group by the
symbol, and even this is not mentioned explicitly, with this understanding, we are simply
saying that “G is a group” instead of ““ (G, ) is a group”.

8.2.1: Definition: Let A and B be two groups. Define a binary operation‘e’on the Cartesian
product A x B as follows:

Forany (a, b)), (a, b,) € Ax B, define

(@, b).(a,b)=(a.a,b.b)wherea.a,isthe product ofa, anda,in Aandb,.b, isthe
product of b, and b, in B. A x B is called the external direct product of A and B and the
binary operation defined on A x B is called as component wise operation.

8.2.2. Theorem: Let A and B be two groups. Then A x B is a group under the binary
operation defined as above.

Proof: Let (a, b), (&%, bY), (&%, b*) EAx B
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Now ((a, b).(a%, b)).(a**, b*)
= (aa, bb").(a", b')
= ((aat)a™, (bbh)b™)
= (a(a'a'?), b(bb!)) (by the associatively in A and B)
= (a, b).(a'a'?, b'b™)
= (a, b)((@",b").(a", b))
Thereforee’is associative in A x B
Let e and e' denote the identity elements in A and B, respectively.
Then (e, e') E Ax B,

and (a, b)(e, &) = (ae, be!)
=(a b)

= (ea, e'b)

= (e, e')(a, b)
Therefore, (e, e?) is the identity element in A x B.
We have a*€ A and b€ B. So, (a%, b™*) EAx B and

(a, b). (@ bt =(aa?, bb?)
= (e €)
= (ata, btb)

=(al, bY).(a b)
Therefore, (at, b™?) is the inverse of (a, b) in Ax B; That is, (a, b) ™t = (a%, b™)
Hence, A x B is a group.

The above idea can be extended to the product of any finite number of groups. Explicitly we
have the following theorem.

8.2.3: Theorem: Let G, G, ............ , G, be groups and G = G X G X .......... X G, the
cartesian product of G, G,,, ........... , G- Then G is a group under component wise product
[G is called the (external) direct product of G, G,, ...... , G, 1.

Proof: Let (g1, 82, ...., 8), (21, g3, ..., g1 ), (gtt. g3t ...gtV EG
(i) (g1, 82, -y 8n)(EL, €3, ., B ) = (8181, 8283, ..., BZ ) E G.
(i) (9n, 92 - O)((eh g2, ..o 82 )t g2t o o glD)

= (glv ng sy gn) (gigil!g g" §own Jg:zgu j

= (9i(gie?), 9o(g3gs'), --..... gn(EaEa))
= ((el)st’, (8183 ..., (g8a)Ex")
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= (18}, 0283, ..., Ongx) (g1 g3% v gih)
= ((glv 921 AR gn)(gj_’ gja LR gu)) (gj_ !g"' B ;g,z j
Therefore, €e’is associative in G.

(iii) Lete. denote the identity element of G, 1 <i<n

Then (el, €, e en) € gand

=(g,e,8.,,8¢€)

=(9, Gy 9 (€, € ooy €)

Therefore, (e, e e ) is the identity element of G.

IR RERET

(iv) We have g;* € Gj, 1<i<n,
So, (EII, g;l, ....... , g;l) € G and
(8, 8, 8. grhgst, v, BaY) = (e, e, . e)

Therefore (g7%.g5%, ....... ,2-1) is the inverse of (8,8, 8,) in G or equivalently

(gll gz' """ ’ gn)-l = ( gIl-'gi_'ll """" ’ g;l)
Thus, G is a group.

8.2.4. Self Assessment Question: Let A and B be groups, a € A and b € B. Suppose O(a) = n
in A and O(b) = m in B. Then prove that O(a,b) = l.c.m of{n,m}in A x B.

8.3. INTERNAL DIRECT PRODUCTS:

Take the additive group Zs of integers modulo 6. Then Zs= {0, 1, 2, 3, 4, 5}.
Let A={0, 3} and B = {0, 2, 4}. Now A and B are subgroups of Z,.

So, we can treat A and B as groups on their own. It can be easily verified that every element x
in Zs has a unique representation of the formx =a + b witha € A and b € B.

Also, the map (a, b) — a + b: A X B — Zg is an isomorphism of A x B onto Zs. Hence Zs is
isomorphic to the external direct product of the groups A and B. This motivates the
following.

() G=NN....... N , and
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(ii) every element g € G can be uniquely expressed asg=aa, ~a witha € N. 1<i<k.

8.3.2. Lemma: Let N, N, ........ , N,_be normal subgroups of a group G such that G is the
internal direct product of N, N,,, ......... » N,. Then the following hold for any i # J.
(i) NN N, = {e}.

(i) ab=baforanyaeN andbe N..

Proof: Letl < i #j<Kk

M Let x € Niﬂ Nj'ThenXEG:N1N2............Nk'

This implies that x =e...... exe.....e and

it jth
Since G is the internal direct product of N, N,, ....., Nk, the element x € G has a unique
representation as a product of elements of N;, I =1, 2, ....., k. So, x = e. Therefore, Nin Nj =

{e}.
(if) Letae Njand b € N;
Consider aba*b™ = a(ba™b™) € N; (since a € N; and N; is normal)

= (aba™) b* € N; (since b € N; and N; is normal)
Therefore, aba bt € Nin N; = {e} and
hence ababt=¢;
That is, ab = ba

8.3.3. Theorem: Let G be a group and suppose that G is the internal direct product of its
normal subgroups N, N,,, ...... N Let T =N, XN, x...x N, the external direct product of

N, N, ... , N,. Then T is isomorphic to G.

Proof: Define f: TG by f(x, X,, ..., X ) =X X,.... X _forall (x,, X, ..., x ) € T.
By lemma 8.3.2 (ii), we have ab = ba for all a € N. and beNj andi=j........ @)
We show that f is an isomorphism. Let (X, X,, ....., X)), (¥, Y, .- Y ) E T.

(i) Now h((X}, X, cooees X)(Yps Yoo -0 V)
=h(X.Y XY, e X Y,)

= (X YD(XY,) oo (*x,)
= X (Y)Y, XY g XY, (by(2))
= X, (X2Y1)Y,X,Ygeeenes XY,

= XY YV XY XY,



Algebra 8.5 Direct Productg

= (X Xy eees XYY Yoy -0 V)

= h(Xp X5 weees XN Yor -0 V)
Therefore, h is a homomorphism.
(ii) Suppose that h(X;, X, «ooees X)) = (Y Yo -0 )

Then X, X,....X, = Y, Yoo Y,

Since G is the internal direct product of N, N, ....... N, andx,y. €N, 1<i<k
we have X, = AR e X =Yy
S0, (Xs Xy evverae y X) =V Yy 0 V)

Therefore, h is one-one.

Therefore, T is onto G. Hence, T is isomorphic to G.

8.3.5. Theorem: Let G, G,, ..., G, be groups and G = G,x G,X....x G, the external direct
product of G, G,, ..., G . Forany 1 <i < n, let Gi = {(e},... ;, §; €}, €) /9, €EG}.
Then each Gi is a normal subgroup of G, G is the internal direct product of G1, Go»,...., Gn and
G, is isomorphic to G;, 1<i<n.

Proof: Fix 1<i<n.

Clearly Gi€ G and Gi # ¢ as (e1, €2, ..., ) € Gi We shall prove that Gi is a normal
subgroup of G.

Let (1, ...€i1, Ui, €i+1..., €n), (€1, €2, ...Ci1, Oi%, €is1..., €n) € Giand (X1, Xz,....., Xn) € G

(i) (e1, ...ei1, Gi, €i+1..., €n)(E1, €2, ..., €i-1, Qi) €i+1..., €n)=(€1, €2, .81, §igi, €is1.., €n)E Gi

(ii) (e1, ...ei-1, Gi, €iv1..., €n) " =(e1, €2, ...¢i1, Ui, €iv1..., €n) € Gi

So, Gi is a subgroup of G.

(iii ) Now (X4, .., Xi-1, Xi, Xi+1,.., Xn) (€1, ...€i-1, Gi, €i+1..., €n) (X1, .., Xit, Xiy Xi+1, .., Xn) L

= (e, ...ei1, XigiXi, €i+1..., €n) € Gi.

Therefore, Gi is a normal subgroup of G, 1 < <n.

Also, forany g = (9,, 9, .- ,g.) € G, we can write

9=(9,€, € )(€,0, €0 .0y € )enrnn. (e €,..., & ,,0)€EGiGa...... G

Therefore any element of G can be expressed as an element in the product G1Go...... Gn. It can
be easily verified that this representation is unique also.

Hence, G is the internal direct product of G1, Ga,...., Gn. Now for any 1 <i <n, define fj: G;
>Gi by fi(gj) = (e &, G, €, , e )for all g;€ G;. It is easy to see that fj is an
isomorphism. Hence, G; = Gi.l<i<n.
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8.3.6: Problem: Let G be a group and N, N,, ....., Nk be normal subgroups of G. Then

prove that G is the internal direct product of N, N, ....., Nk, if and only if, the following are
satisfied.

[ ) G=NN,...N,

(i) Foreach1<i< n,NiN(NN,...N. N......N) ={e}
Solution: First assume that G is the internal direct product of N, N,,, ....., Nk.

Then any element g of G can be uniquely expressed as g = a1a.....ax where a;€N;, 1 <i <k.
This implies that G = N,N,......N,. Fix 1<i<k.

Let a€ Nj N (N1N»,...N;j_q1Nj4+1.....NK). Then aEN; and a=aja,.....aj_1aj4+1.......apfor
some g € Njall j # 1.

So, ee...e.a.e.....e = a=27a9.....8j_1€8j4 1 ....ak € NqNo....N}= G.

By the uniqueness, it follows that aj=e forallj=ianda=e.

Therefore Nj N (N{No,..Nj_1,Nj1....N}) = {e} fori=1,2,....k

Conversely, assume the conditions (i) and (ii).

We shall show that G is the internal direct product of Nq,No, .....,Nj

Letg€G andg=aa,...a =bb,....... b, where a;, bi € Nj for i=1, 2, ..., k. Fix1 <i<k.

— -1,_-1 -1
Then we have a a,....a. = bib....bca; "az ... Qs
-1 -1 T - -1
—=> aj = ﬂi—lﬂi—: . ....ﬂ: lﬂllblbz ...... bkﬂk lakil""ﬂf'l'l —* ((X.)

Let 1 <j<nwith] # i be fixed.

Clearly, Nj € NqNo....NiaNis1....Ny
So, Ni NN € Ni 1 (NiN2....... Ni-1Ni:1. . Nk) ={e}

and that Njn Nj = {e}.Since N; and Nj are normal subgroups of G, by 8.3.2, we
have ab = ba for alla € Njand b € Nj. So, (@) becomes

a=(a7'bi Y. (a7 b7 ) (aiibiy) ... ag tbN)by

= aibit = (a7'by) ...... (a7t bi1) (@ bist)......(az *by)

Now a7 € Nin (NiNa.......Ni-tNisa.... N ={e}

=aj=bhj1<i<k

Therefore every element g in G has a unique representation of the form g = a;.az...ax with
3 ENj 1<i<k.

Hence G is the internal direct product of Nq,No, ...... » Nk

8.3.7. Problem: Any finite abelian group is the (internal) direct product of its p-Sylow
subgroups.

Solution: Let G be a finite abelian group and o(G) =n> 1.
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Now n = pi*ps® ... ....p.", Where pa, P, ..., P« are distinct primes and aq, @2 ,......... , Qi are
positive integers. By Sylow’s theorem-I, G has a p;-Sylow subgroup Nj of order p ,1<i <k.
Since G is abelian, each N;, 1< j<k is a normal subgroup of G. We show now that G is the
internal direct product of its normal subgroups N1,No,...,Nj

Let x € N1 N N2. Then o(x) [o(N1) = p,*and o(x) [o(N2) = p5*=.

So, O(X) | (py*.ps*) =1 and that o(x) =1 and that x = e. Therefore, NaiN,={e} and O(N1N>)

_ O(N,JO(N,) _ piips°

S P Y
“omnny 1 PPz = O((N1)O(N3)

Lety € N3 n NiNa.
Now O () | O (Ne) and O(y) | O(N:Nz) = p{* s

S0, 0(y) | (o=, p5*p&=) =1 and that o(y) = 1 and that y = e.

Therefore N3 n NiN2 = {e} and

olN, NJO(N,) _ piip.tpg®
O(N, Ny ) 1

O(N1iN2 Ng) =
= O(N1N2).O(Ns)

Continuing this we get that Ni 0 NiNz.......Ni.1= {e} fori=2,3,.... .k and

O(N{,No,....NK) =Py * Py e p S = 10,

Since Nq{No........ N is a normal subgroup of G and O(G) = n, we have that G = Nq{No  Nj.

Hence, G is an internal direct product of its p-Sylow subgroups N¢,No, ...... » Nk
8.4. MODEL EXAMINATION QUESTIONS:

8.4.1.1fG1,Go, v, , Gy are groups, Prove that the product G = G X Go X ... X Gy is also
a group under coordinate wise operation.

8.4.2. Define the notion of an internal direct product and prove that it is isomorphic to an
external direct product.

8.4.3. Let G=G1x Gox...... x Gy, where each G;j is a group. Then prove that there exist
normal subgroups N1,Nj,......... N, of G such that G is the internal direct product of
N1,No,......... Npand Gj=N; foralll<i< n.

8.5. EXERCISES:

8.5.1. Let G, Gy, .Gy be groups and G = G1x Gy x ....x Gp,. Then prove that there are
normal subgroups Nq, No, ........ , N, of G such that G/N; 2 G; for all1<i<n.

8.5.2. For any groups G1,G»,G3,



Center for Distance Education 8.8 Acharya Nagarjuna University]

Prove that G1X Gz o G2X Gl and (Glx Gz)X G3 o G1X(G2X G3)

8.5.3. LetGheagroupand let T=G xG. LetD ={(g,9) € GXx G| g€ G}. Then prove
that D is a subgroup of T and D 2= G. Also, prove that D is normal in G if and only if G is
abelian.

8.6 SUMMARY::

In this lesson, we have learnt the concepts of an external direct product and an internal direct
product and proved that these two are same, upto isomorphism.

8.7 TECHNICAL TERMS:

External direct product
Normal subgroup
Internal direct product
Isomorphism

8.8 ANSWERS TO SELF ASSESSMENT QUESTIONS:

8.2.4. n is the smallest positive integer such that a"= e and similarly m for b.

Let k = I.c.m of {n,m}. We prove that k is the smallest positive integer such that (a, b) =(e,
e), the identity element in A x B. Since n | k and m | k, we have that k = ns and k = mt for

some positive integer s and t.
Now(a, b)¥ = (ak,b¥) = (a™,b™)

=((a")*, (>™) )
= (€5, &Y

=(e€)

Also, for any positive integer u,
(ab)’=(ee) =(a" b")=(e €)

—a'=eandb'=e
=0(a) | u and o(b) | u
= | uand m | u
—k]|u

= k<u
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Therefore, k is the smallest positive integer such that (a,b)*= (e,e) and hence O(a, b) = l.c.m

{0(a), O(b)}

8.9 SUGGESTED READINGS:

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.
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LESSON -9
FINITE ABELIAN GROUPS

OBJECTIVES:
The objectives of this lesson are to

X/
°

prove that any finite abelian group is a direct product of cyclic groups.

define the notion of invariants of a finite abelian group and prove that any two
abelian groups of order p" are isomorphic if and only if they have the same invariants.
% derive a formula for the number of non-isomorphic abelian groups of given order.

X/
°

STRUCTURE:

9.1. Introduction

9.2. Fundamental theorem on finite abelian groups
9.3. Invariants

9.4. Abelian groups of a given order

9.5. Model examination questions

9.6. Exercises

9.7 Summary

9.8 Technical terms

9.9 Answers to self assessment questions

9.10 Suggested Readings

9.1. INTRODUCTION:

In this lesson, we pay special attention to finite abelian groups. The reason is that no
other general class of groups has the structure as completely known as easily described. When
one is setting up a structure theory, the overall strategy is to express the complicated algebraic
systems in terms of those better behaved we accomplish this in the present lesson by proving
that any finite abelian group is a direct product of cyclic groups. We also derive at a formula
to know the number of (non-isomorphic) abelian groups of a given order.

9.2: FUNDAMENTAL THEOREM ON FINITE ABELIAN GROUPS:

It is well known that any cyclic group is abelian and that any finite cyclic group must
be isomorphic to the additive group Zy, of integers modulo n, where n is the order of the

group. In this section we prove that any finite abelian group must be a direct product of finite
cyclic groups. That is, in a sense, the finite cyclic groups(or Z,’s) are like building blocks in

the theory of finite abelian groups.
9.2.1: THEOREM (FUNDAMENTAL THEOREM ON FINITE ABELIAN GROUPS):
Every finite abelian group is the direct product of cyclic groups.

Proof: Since any finite abelian group is the direct product of its p-Sylow subgroups (by
8.3.7), it is enough to prove that any abelian group of order p", where p is a prime number
and n is a positive integer, is a direct product of cyclic groups. Let G be a finite abelian
group of order p", where p is a prime and n is a positive integer. Since o(G) = p", we know
that the order of every element of G must be a power of p. We get an element a;eG of
largest order among the elements of G and O(a:) = p¥ (k<n). Consider the cyclic subgroup
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A= (al):{e,al,ai ....... , ﬂi'{_;} of G.
If k = n, then A1 = G, so that G itself is cyclic in which case the theorem is trivial. Suppose

that k < n. Then Az is a proper nontrivial subgroup of G. Now, consider the quotient group

oic) _P" _ o mk
0(4,) ok .

G/ A1. As G is abelian, G/A1 is an abelian group and O(G/As) =

We get an element A1b, € G/A; of largest order among the elements of G/A: and O(A1bz) =
p"=.

We have that p™= is the least positive integer such that (A,b,) P A

That is, A, b,? = Ay, This implies that b, € A,.

Suppose that (b2) N A1 = {e}.

Now b:*"'l= = a for some positive integer 1= i< p™:( ~ b;’n‘ €A, = (a1)

Since O(a1) is largest, O(b2)= 2™, O(a1) = p™+. Also O(b2) | O(G) = p" implies O(ay) isa
power of p.

So, b,”  =e € A,. Therefore, (A;b,) " = Ay b,? "= A e = Ay, so that p™ | p™ and that
n = no.

Now (ai) # " =( b, ) P™ ™ = b,?" =eand hence p™|ip™ " and that i = j p™= for
some integer j.

Put az= r:lebz. Then az € A1b, and hence Aiaz = Aibe

Also, a:i’n: = (aljb:)*’n: = aIJ'pn:_ b:pnz
= aIfbgpn:
—aj'a] =e.
Therefore, a,® - = e and hence o(az)| 2™.
Let t be a positive integer and a,"=e.
Now e = a, = (a,’b,)' = a, b3,
So, b} = af € A,. Since p™ is the least positive integer with b, €A,, we have that
p"z =t, so that O( a,) = p"=.
Put Ac=(@;). Let x € A1 n Az,
Then x€ A1 = (a;) and X € Ay = ( a,).
Now x = a5 for some integer | and that
X = as= (aljh:)' = alﬁb:: € A1 n A, and hence b; = xcﬁf € Agthatis A, b,' = Ag;
that is, (Aibz)' = A,. Therefore, p™| I, and so x = a5 = e.
Hence, A1 n Az = {e}.
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If G = A1 Az, then G is the internal direct product of A: and A..

Suppose that G # A1A2. Now, consider the quotient group G/A1Az. Let A1 Axbs be an
element of largest order in G/A1A2 and O(A1Azb3) = p ™=,

Now by?" = e € AuAy; that is (4,4,b,)% " = 4,457 = AAs.

Therefore p™:|p™= and so nz = ny.

If AtA2 n (by) ={e}, we get the result .

Suppose that A1Az n (by) #{e}-

We have b,? € AA; (since O(AsAzbs) = p™)

(it : : . . .
S0, b.F - =a'*a'z, for some integer i1 & i..
3 i B g

Consider (a*a2)?™ ™ = (b7 )P
fMg—Tg i Mo =Tg
l p

R Ma
= a) .ak =b" " EAL

-,

Mz
" =b.f €AL

fMog—Tg

i P
= qa'® € AL

Since O(A1A2) = p™=, we have p™= | .. p™=™ "=, and s0 i> = j» p"=, for some integer jo.

Also, [a:ll'-ai;]i’n"_”“ = [bapnajﬂ“'-'”"
=b,? " =e.
. : My —Tg
This is to say that a, ™™™ = g € A1 n Az ={e}
: pi"l.'_—i"l.g_
That is, a)? =e. AsO(A)=p™, p™ | ijp™ "=

This yields that p™=|i1. This implies that, i = jup™= for some integer j:. Let a3 = aIi'-. a;“ b..
Then as?™ = (a]".a}" . by)?"™
—i, P-'la —i. i'-’rl

a. 'z

8 n
- p e
=a, . a, by

= aIi'-a;i‘bEpna
=e (since b,? = a'*a?)

Let ‘s’ be a positive integer such that a;*=e.

Nowe=as® =(a;".a}".b;)* =a]"* . a;" .b,".

S0, by"=al". al2” € AiA; and that

A1A2. by = AtAzand that (A1A2. b3 )* = AlA;

Since O(A1Azb3) = p™=, p™=| t so that t= p"=

Therefore, O(as) = p™=. Put As = (as)

Lety € Az n AtA2. Theny = a:; = “1 n: for some integers I, I, and I3
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Since as = a]’*, a;7=.bs, we have that (a*.a;"*.b,)% = al® = aj*al
This is to say that b,'s € A1A; and that

A1Azb, "= = AiA; and that (A1Azb;)'= = AlA,

So, p™=| I3 (since O(A1A2b3= p™=); that is, I3 = kp™= for some integer k.

kpl=

Therefore, y= ai=a,

ng

=€

Hence, As nAA= {E}

If G = AjArA3, we get the result. Otherwise, we continue the process and we get that G =

Thus, G is the internal direct product of cyclic groups A1,As, ..., Ay.

9.2.2. Self Assessment Question: Give an example of a non-cyclic abelian group of order

p", where p is a given prime and n > 1.

9.3. INVARIANTS:

With any abelian group of order p", we shall associate a finite sequence of positive integers
whose sum is n and these integers are called the invariants of the group .This help us in
getting a formula for the number of distinct (non-isomorphic) abelian groups of order p",
where p is a given prime and n is a positive integer.

9.3.1. Definition: Let G be an abelian group of order p", where p is a prime and n is a
positive integer. Suppose that G = A1Ay Ak, the internal direct product of cyclic

subgroups A, 1 <i <k, and O(A)=p™, 1 <i<k with ny >ny > > n, > 0. Then the integers
N1,Ny,....,ny are called the invariants of G.

Note that the subgroups Ai, A2, ..., Ak and their generators in the definition (9.3.1) of
invariants are not unique. For, consider the following.

9.3.2. Example: Let G= {e,a,b,ab} with a?=e = b? and ab = ba. Then G is an abelian group
of order 22. Let A={e, a}, B= {e, b} and c={e, ab}. Then A, B and C are three distinct
cyclic subgroups of G, and G = AB, G = AC and G = BC are three different decompositions
of G into products of cyclic subgroups though the invariants obtained are same.

9.3.3. Self Assessment Questions: What are the invariants of the group G given in 9.32.

9.3.4. Definition: Let G be an abelian group and s be an integer.
Then G(s) = {gEG/g°= e}
Note that G(s) is a subgroup of G.
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9.3.5. Lemma: Let G, G be isomorphic abelian groups and s be an integer. Then G(s) and
GY(s) are also isomorphic.

Proof: Let ¢ be an isomorphism of G onto G.

We shall prove that ¢ maps G(s) isomorphically onto G(s).

First we prove that ¢(G(s)) = G(s)

Let x €G(s). Then we have x°= e, and hence ((x))*= @(x%) = ¢(e) = €, the identity in G,

So, ¢(X) EGL(s). Therefore, ¢(G(s))E GX(s).

Let u €GY(s). Then us=el. But, since ¢ is onto, u = ¢(y) for some yeG.

Therefore, el = u® = (¢(y))® = &(Y°). Because ¢ is one-to-one, we have y*= e and so yeG(s)
and hence u = ¢(y)€ ¢(G(s)). Therefore, G1(s) E ¢(G(s)) and hence ¢(G(s)) = G*(s). Thus
¢ maps G(s) onto G*(s). Therefore since ¢ is one to one, onto and a homomorphism from
G(s) to G(s), we have that G(s) and G(s) are isomorphic.

9.3.6. Lemma: Let G be an abelian group of order p", where p is a prime and n is a positive
integer. Suppose that G= A Ag............ Ak, an internal direct product, where each A; = (a;) is

cyclicof order p™, 1<i<kand ni>n;>...>ne> 0. If mis an integer such that nt >m > nu1,

then G(p™) = B1Ba....BiAw1.Awa...... Ax, where Bi:(ai”n[_m] and O(Bj) = p™, fori<t. The
order of G (p™) is pY, where u=mt+X; ;. ; ;.

Proof: We have that G = AjAo....... Ay, an internal direct product, where each Aj=(g;) is a
cyclic subgroup of order p™, 1< i <k and ni>ny> .. >n>0.
Consider G(p™) = { x G/ x? =g } where ni > m>p,,,. Itis clear that x® =g

for all x € Aj, t+1< j < k as m > nw1 (since x € (aj) implies X = a} for some 0 < I< p™ and

ﬂ}-PHEZ e).

So, Aj EG(pM forallt +1 < j< k.

m

-
=a,F =eand

(ﬂ}_p“i‘-‘" )=p"

So,Bi=(a”" ) S G(p™ and o(B) = p" forall 1< i<t.

For1<j<t, (a7 )P

Since By, By, ...... , By, Aw1, Aso, ....., Ac are all contained in G(p™), their product is also
contained in G(p™)....... (1)

Let x € G(p™). Then x? =eand x = a,'*a,'= ......a,'x for some integers 0< i < p™,
i=12,.....k

So,e=x?" =(a,2)? (ay2)P ......(a,*)?" and (a,%)?" € Ai, 1<i<k.
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Since the product G = A1 Az..... A« is direct, [ai’f)”m zeforall1<i<kandsop™|lip™ for

all 1 <i<k. For 1 <i<k, i =p™™™. s for some integer S;. So, a,’i = [ai”nrmj""i € B; forall

1<igt.
fj—m
S I Ipss I - 5,0 Ity s
As X =a,*a,=..a,ta.,, ™+ ...a, %, Wwe see that X = a, TR T C
[ DU N P

This is to say that x € B1Bs....BiAw1.Aw2...... Ak
Therefore, G(p™) < BiB>... BAs1.Aw. .... . Ak...... (ii)

From (i) and (ii), we get G(p™) = B1B>....BiAw1.Aw2...... Ak
Now O(G(p™) = O(B1). O(B2) ....O(Bt) O(Aw+1) O(Aw2)...... O(Ax)

=pmp™...pT plrripteez | pTk
(1 times )
=p™ pEiam,
Thus O(G(p™)) = p", whereu=mt + T¥_.., n,

9.3.7. Corollary: Let G be an abelian group of order p", where p is a prime and n is a positive
integer. Suppose that G = AjAg.............. Ay, an internal direct product, where each Ai = (ai) is

cyclicof order p™, 1<i<kand ni>ny>........ > nk> 0. Then O(G(p)) = p*.
Proof: By applying the lemma 9.3.6 to the case m =1,
we have t = k and o (G(p)) = p* (since u = 1k=K).

9.3.8. Theorem: Let p be a prime and n be a positive integer. Then any two abelian groups of
order p" are isomorphic if and only if they have the same invariants.

Proof: Let G and G! be two abelian groups and O(G) = O(G?) = p".

Suppose that G and G* are isomorphic. Let ng, na,........ Nk be the invariants of G and let my,
mz, ... , my be the invariants of G*. Then G=A1 A; ......A«, an internal direct product, where
Ai= (a) is a cyclic subgroup of order p™ in G, 1<i<k and n; >n; >........ > nk >0 and G'=B;
B2 oo B, an internal direct product, where Bj = (bj) is a cyclic subgroup of order p™i in
Gl 1<l my =mp >, >m; >0.

Since G and G*are isomorphic, by lemma 9.3.5, G(p) and G*(p) are also isomorphic.

S0, O(G(p)) = O(G*(p)). According to the corollary 9.3.7, O(G(p)) = p'and O(G(P)) = p'.

Hence p*=p'and so k = I. Thus the number of invariants for G and G* is the same.
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We shall show that nj=m; for all 1< j < k. Suppose ni=m; for some 1< i< k.

Let ‘t’ be the smallest integer such that 1<t <k and n¢> me. Then ny1 = mg, N = My,..., ne.1 =
Mt-1,Nt > M.
Letm=m:. Put H={g? /g €G}and H! = {y* / yeG'}. Clearly, H and H* are subgroups of

G and G, respectively.
Let T: G—Glbe an isomorphism of G onto G,
Now T (H) =H. So, H is isomorphic to H*

Because G = (a1)(ay).....(a), we get that
H= (alpm)( a:“m].....( ar”mj.....( a;’mj where ns >m > ns.1.

Because G = (bq)(bo)....(lo)) ,we get that
H = (5,7 ) (57 Bey? )

So, the number of invariants of H is s>t and the number of invariants of H' is t—1
As H and H! are isomorphic, we have that s = t—1 and that t—1>t, which is a contradiction.

Therefore, n= mifor all 1<i<k.

Hence, G and G! have the same invariants. Conversely, suppose that G and G* have the same
invariants nq, Ny, ....... , Nk. Then G =AqA,..... Ay, an internal direct product and G!=B;

B2...Bk, an internal direct product where Ai = (ai) and B; = (b;) are cyclic subgroups of order

pni in G and G?, respectively and n1 >np >........ > nk > 0. We shall prove that G and G* are
isomorphic.

Define T: G—G! by T(a,*a,® .....a, ")
=b,"tb," ....b. % forall a,*:a,* ... ...a, "% EG

Since each element gEG can be expressed uniquely as g= a,'ta,' ... ...a, * with a,'t €A,
1<igk, it follows that T is well defined.

Let a, %, a.'t €A 1<i<k.

NOW T((ﬂls'_ ﬂjﬂ': . "'ﬂkskj( al:__a::: o ak:kj)
= T(ﬂls"ﬂ'- .CIESZ‘H: ﬂkskﬂ;{ )
= bls-_+!-__b:s:+:: bks?f“k

= (b ":b,™ .. b, ) (by by "2 b F)
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=T(a;"a,™ ...a;, ) . T(a,2a," ... ..a, %)

Therefore, T is homomorphism.
Suppose that T(a,* a,% .....a, %) = T(a,*a,'

Then b,%:b,% ... b = b,'*b,'s .. ..b '

Since G is the internal direct product of B1 B,

e e @ 1K),

Bk, We have b, = b, for all 1<i<k.

Now b, %" = e for all 1<i<k. So, p™|s; — I, for all 1<i<k.

AsO(a) =p™, a5t =¢; That is, a,t = a,' for all 1<i<k.

=, = |- T— i, i I
S0, a,%ra,% .. .a,h = agra, . aay ¥

Therefore, T is one -one

Since T is one-one and O(G) = O(GY) = p", T is onto. Hence, G and G are isomorphic.

9.3.9. Self Assessment Question: For any positive integer m, prove that any two cyclic

groups of order m are isomorphic.

9.4. ABELIAN GROUPS OF A GIVEN ORDER:

In this section, we derive a formula for the number of non-isomorphic finite abelian groups of

a given order.

Let us recall the following: For any positive integer n, by a partition of n we mean a sequence

of positive integers nq, no,
set of all partitions of n is denoted by p(n).

, N suchthat nq=no> > ny and ny+no+.....+n=n. The

9.4.1. Theorem: For any positive integer n, the number of non-isomorphic abelian groups of
order p" is equal to the number of partitions of n, where p is a given prime.

Proof. Let n be a positive integer and p be a prime
of n. Thenn=nq+no+...+nand ny2n; >........ >

NOW an-_ >( Epﬂ: >{

n,+ ngt

p™ =p

number. Let {nq,ny,
ng >0.

Nk} be a partition

X Z,m is an abelain group of order

In this way we get p(n) number of abelian groups of order p", where p(n) is the number of
partitions of n. According to theorem 9.3.8, these are all non-isomorphic abelian groups of order
p". If G is an abelian group of order p", then its invariants mi>mp>.......... >m¢>0 (say) also a

partition of n and this group is isomorphic to one of the p(n) abelian groups, which

corresponds to the partition{mq,mo,...,m;}of n.
isomorphic abelian groups of order p".

Thus there are exactly p(n) number of non

9.4.2. Self Assessment Question: How many non-isomorphic abelian groups of order 81 are

there? List all these.
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9.4.3. Corollary: Letp,, p,,....., py be distinct primes and nq, ny,......, n¢ be positive integers.
Then the number of non-isomorphic abelian groups of order p, ™ .p, ™+ ... p. ™ is equal to the
product p(n1).p(ny).....p(ny), where p(n;) is the number of partitions of n;.

Proof. Let G be an abelian group of order p,™.p,™ ...p.™. Since G is abelian, G has
unique pi-Sylow subgroup pi of order p;™ , 1<i<t. Moreover G = pq.po.....p;, an internal
direct product of its normal subgroups p1,po,......pt . (see 8.3.7).

Also, we have that if G1 and G are abelian groups of same order and Gi=H: H> .....Hx, an
internal direct product of its Sylow subgroups. Hi,Hz,...H: and G2 = T1 .T> ......... Tk, an
internal direct product of its Sylow subgroups T, To, ...., Tk are isomorphic if and only if H;
=T; for all 1<i<t, that is, the corresponding Sylow subgroups are isomorphic. Therefore, as
there are p(ni) number of non-isomorphic abelian groups of order p;, 1<i<t, we get that the
number of non isomorphic abelian groups of order p,"+.p, ™ ....p, "t is p(n1).p(n2) ...p(ny).

9.4.4. Self Assessment Question: How many non-isomorphic abelian groups of order 600
are there and make a list of all these.

9.4.5. Describe all the non-isomorphic abelian groups of order 1936.

9.5. MODEL EXAMINATION QUESTIONS:

9.5.1. State and prove the Fundamental theorem on finite abelian groups.

9.5.2. For any prime p, prove that two abelian groups order p" are isomorphic if and only if
they have the same invariants.

9.5.3. For any prime p and any positive integer n, prove that the number of non-isomorphic
abelian groups of order p" is equal to the number of partitions of n.

9.5.4. State and derive a formula for the number of non-isomorphic finite abelian groups of a
given order.

9.6. EXERCISE:

9.6.1. Describe all finite abelian groups of order
a)2® b)11° ¢)7° d)24.3*

9.6.2. If G is an abelian group of order p", p a prime and ni>nz>....>nx > 0 are the
invariants of G, show that the maximal order of any element in G is p™:.

9.6.3. If a finite abelian group G has subgroups of orders m and n, prove that G has a
subgroup whose order is the least common multiple of m and n.

9.6.4. Let G be an abelian group of order p"with invariants ni>nz>.....>nx > 0 and H ={e}be a
subgroup of G. If ha>hy>.....>hs > 0 are the invariants of H, then show that k >'s and h; < n;
fori=1,2,...,s.

9.6.5. Let G be a finite abelian group p" and G ibe the set of all homomorphisms of G into
the group of nonzero complex numbers under multiplication. Prove that G is an abelian
group under the operation defined by (1. @2) (g) = $1(g) 2(g) for all ¢1, ¢2 € G and gEG.
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9.6.6. For any ¢ € G and geG, show that ¢(g) is a root of unity, if G is a finite abelian
group.

9.6.7. If G is a finite cyclic group, show that & is also a cyclic group and O(G) = O(G). Hence
G and & are isomorphic.

9.6.8. If G is a finite abelian group and x=y € G, prove that there is a ¢ € G with
®(x) # B(y).

9.6.9. If G is a finite abelian group and 1# ¢ € G, show that Z_-; #(g) = 0.

9.7 SUMMARY:

In this lesson, you have learnt the fundamental theorem on finite abelian groups which states
that any finite abelian group is a product of cyclic groups. We have introduced the notion of
invariants of an abelian group of order p", where p is a prime, and proved that two such
groups are isomorphic if and only if they have the same invariants. Also, we have proved that
the number of non-isomorphic abelian groups of order p" is equal to the number of partitions
of n, and using this we have derived a formula for the number of non-isomorphic abelian
groups of a given order.

9.8 TECHNICAL TERMS:

Abelian group
Fundamental theorem
Cyclic group
Invariants

Partition

9.9 ANSWERS TO SELF ASSESSMENT QUESTIONS:

9.2.2. Consider ZpxZpX........... xZp (n times). This is an abelian group of order p.p....p (n-
times) = p"and is non-cyclic, since any element, except the identity, is of order p.

9.3.3. O(G) =4 =22, O(A) = 2, O(B) = 2 and G = AB, an internal direct product of cyclic
subgroups A and B. So, the invariantsof Gare 1, 1, .........

9.3.9. Let G be a cyclic group of order m. Then G = (a) for some a€ G, whose order is m, and
G ={e a a°,.... , @™} It is easy to verify that i — a' is an isomorphism of Z, onto G.
Therefore G= 7. If H is another cyclic group of order m, then G = Z,,,=Hand hence G = H.

9.4.2: 81 is of the form p" where p =3 is a prime and n =4 is a positive integer. By theorem
9.4.1, the number of non-isomorphic abelian groups of order 3* is equal to the number of
partitions of 4. But the number of partitions of 4 is 5. The partitions of 4 and the
corresponding groups of order 3* are given below.

{1,1,1,1} Z3xZ3XZ3x73
{1,1,2} Z5xZ3xZan
{1,3} Z3XEEB

{2.2} Ly 7Ly
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{4} Z3z, which is cyclic of order 34=81

9.4.4: Observe that 600 = 23 .52 .31, Now p (3) = 3 and p(2) = 2. So, by theorem 9.4.3, the
number of non-isomorphic abelian groups of order 600 is p(3).p(2).p(1) = 3.2.1 = 6. To list
all these six groups, we have to determine groups of orders 23, 52 and 3! and take products as
below:

Partitionsof 3 Groups of order 23

{1,1,1} LoyxLyx 2y
{1,2} Zox Loz
{3} L=

The partitions of 2 are {1, 1} and {2} and hence ZsxZs and Z.= are the only groups of order
52. Now, we can list all the abelian groups of order 23.52.31(=600)

ZoxZoxZoxZsxZsxZ3(= ZoxZ100XZ3 = Ze*xZ10%XZ10)

ZoxZoxZoxZz= Z3(= ZexZoxZso)

Zox Loz xZsxZsx Z3(=Z10x Z20xZ3 = Z30xZ20)
ZoxZLnz %Lz xZ3(2Z50x 212 = Z4xZ150)

L3 xZsxZsxZ3 (2Zaox 215~ ZoaxZs5xZs)

Zoz % L2xZ3(2ZoaxZos = ZsxZ7s)

9.4.5. We have 1936 = 2*.112. Now p(4) = 5 and p(2) =2. The numberof non-isomorphic
abelian groups of order 1936 is p(4).p(2) = 5.2 =10.

Partition of 4 Partition of 2 Groups of order 24,112
{1,1,1,1} {1,1} ZoxZoxZoxZoxZinxZa
{1,1,1,1} {2} ZoxZoxZoxZoXZ 5y
{1,1,2} 1,1} ZoxZoxTyz xZ11x 211
1,12} 2} ZoxZox T ¥ Ty o
{13} {11} ZoxZpe xZ113 711
{13} {2} ZoxZos <Ly g
2.2} {11} Z2xZy2xZ11x Zi1
{2.2} {2} Zo2 %2z KLy g2

{4} {1,1} LaaxZ11x Z11
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{4} {2} ZyaxZyp2
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LESSON -10
DEFINITIONS, EXAMPLES AND SOME SIMPLE
REUSLTS OF RING THEORY

OBJECTIVES:
The objectives of this lesson are to

¢ Introduce the concepts like ring, commutative ring, field, division ring.
% Discuss some examples of rings.

% Prove some fundamental results related to the known concepts.

% Understand the relation between the concepts field and integral domain.

X/

X/

STRUCTURE:

10.1. Introduction

10.2. Some definitions and examples

10.3. Integral domain

10.4. Some preliminary results on rings
10.5. Model examination questions

10.6 Summary

10.7 Technical terms

10.8 Answers to self assessment questions
10.9 Suggested Readings

10.1. INTRODUCTION:

Ring is a fundamental abstract concept in the study of algebra. A group is equipped
with only one binary operation where as a ring is equipped with two binary operations
connected by some inter relations. We shall give an axiomatic definition of ring and study
some of its elementary properties.

Despite the differences, the analysis of rings will follow the pattern already laid out for
groups. Study of rings serves as one of the fundamental building blocks for the abstract
algebra.

It is clear that the definition of a ring is an abstraction of the ring of integers. Although
rings are a direct generalization of the integers, certain arithmetic facts to which we have
become accustomed in the ring of integers need not hold in general rings. For instance, we
know that the product of two non-zero integers is non-zero, but this may no longer be true in a
general ring. In the ring of 2 x 2 matrices, we will come across the situation that

(g 'D (g é) = (g g). Thus even though both (g 'i') and (g 3) are non zero, their

product is zero in the ring of 2 x 2 matrices. This leads to the study ofsome special class of
rings. Integral domains, division rings and fields. Also westate the pigeon hole principle which
is useful in proving the theorem that statesthat ‘a finite integral domain is a field’.

10.2. SOME DEFINITIONS AND EXAMPLES:

10.2.1. Definition. A non - empty set R is said to be an associative ring if in R there are
defined two operations, denoted by + and « respectively, such that foralla, b, cinR.
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Q) a +bisinR

(i) atb=b+a

(i) (@+b)y+c=a+(b+c)

(iv)  Thereis anelement 0 in R such that a + 0 = a for every a in R.
(v)  There exists an element —a in R such that a + (-a)= 0.

(vi) abisinR

(vii) a.(b.c) =(a.b).c

(viii) a.(b+c) =a.b +a.cand

(ix) (btc)a=ba+ca

Axioms (i) through (v) merely state that R is an abelian group under the operation +, which
we call addition. Axioms (vi) and (vii) insist that R be closedunder an associative operation;
which we call multiplication. Axioms (viii) and (ix) Serves to inter relate the two operations
of R.

10.2.2. Definition. Let (R, +, «) be a ring. If there is an element 1 in R such thata.l=
l.a=aforeveryainR thenR is said to be a ring with unit element. If the multiplication of R
is such that a.b = b.a for every a, b in R then we call R a commutative ring.

10.2.3. Example. Let R be the set of integers, positive, negative, and 0; + is the usual
addition and the usual multiplication of integers. Then R is a commutative ring with unit
element.

10.2.4. Example. Let R be the set of even integers under the usual operations of addition and
multiplication. Then R is a commutative ring but has no unit element.

10.2.5. Example. Let R be the set of rational numbers under the usual addition and
multiplication of rational numbers. Then R is a commutative ring with unit element.

10.2.6. Self Assessment questions.
Find the multiplicative inverse of a given non-zero rational number.

10.2.7. Definition. A ring in which the non-zero elements form a group is called a division
ring or skew-field.

10.3. INTEGRAL DOMAINS AND FIELDS:

10.3.1. Definition. If R is a commutative ring, then 0 = a € R is said to be a zero divisor if
there exists b € R, b = 0, such that ab = 0.

10.3.2. Definition. Acommutative ring is an integral domain if it has no zero divisors.

10.3.3. Definition. Aring is said to be a division ring if its non-zero elements form a group
under multiplication.

10.3.4. Example. The ring of integers is an integral domain.

10.3.5. Example. The ring of all real numbers with usual addition and multiplication is a
division ring as well as field.

10.3.6. Lemma. If R isaring, them for all a, b ER
() a0=0a=0
(i1) a(-b) = (-a)(b) = —(ab)
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(i) (-a)(-b) = ab

If, in addition, R has a unit element 1, then
(iv)(-1)a=-a
v) (11 =1

Proof. Assume that Risaringand leta, b € R
(a0=a(0+0)=a0+a0d
Now, 0 + a0 =a0 =a0 + a0

— a0 = 0 (by the right cancellation law)
similarly, Oa + 0 =0a = (0+0)a = Oa+0a
— 0a =0 (by the left cancellation law)

(i) By (i) 0=a0
=a(b+(-h))
=ab +a(-b)

= a(-b) =—(ab)

Also 0=0b = (a+-a)b
=ab + (-a)b

= (-a)b =—(ab)
Therefore, a(-b) = (-a)b = — (ab)
(iii) (-a)(-b) = —(a(-b)) (by (i)
= - ((ab)) (by (iD))
=ab

(iv) Suppose that R has a unit element ‘1’
consider (-1)a = —(1a) (by i)
=-a

Therefore, (-1)a=-a

(v) Consider (-1)(-1) = - ((1)(-1)) by (ii)
=—((LD) by (ii)
=11=1

((or) by (iii) (-1)(-1) =1.1 =1.

10.3.7. The Pigeonhole Principle

If nobjects are distributed over m places, and if n > m, then some places receives at least two
objects.

10.3.8. Lemma. A finite integral domain is a field.

Proof. Let R be a finite integral domain. Then R is a commutative ring which has no zero
divisors.
To prove R is a field it is enough to prove that every non-zero element has multiplicative
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inverse. Now we show.
(1)  There exists 10 such that al=a vaeR

(i)  For every 0 acR there exists beR such that ab =1

Let R = {Xq, X, ...., Xy} and 0z aeR

Now, we claim that x4a, X4, ...., X,a are distinct elements in R
For, xja= Xja for some i #j

= (Xi_xj) a=0

= Xj =X =0 (since R is integral domain and a«0)

j— Xi =Xj

This is a contradictionto i « |
Thus xqa, X54, ...., Xya are distinct elements in R.

Therefore R = {x4a, X04, ...., Xa}
Since a € R, a = xa for some 1<k <n
This implies a = xa = ax,  (* Riscommutative)

Now we show that x). is the identity element in R.

LetreR
Then r = X| a for some 1< <n

Consider r Xy = (Xja)Xk
=X (@ Xxg)
=xja=r
Therefore, r X =x, r=r, vreR
This shows that X} is the identity element in R. Let us denote xj, =1.
Also xy.= Xja for some, 1<j<n (.. XgeR, x= xjafor some )
Since R is commutative,
x, =x;8=ax; forsome 1< j<n
This shows that X is the multiplicative inverse of a in R.
Hence R is a field.

10.3.9.Corollary. If p is a prime number then Jp, the ring of integers mod p, is a field.

Proof. By the lemma 10.2.8 it is enough to prove that Jp is an integral domain, since it only

has a finite number of elements. We know that Jy={3,7, 2, .. » — 1 }iS @ commutative ring
with respect to addition and multiplication modulo p.
Leta, b €], and suppose that@ b =

Nowa b =7 = ab=0(mod p)

— ab-0 is divisible by p
=p|ab

= plaorp|b
—=a=0(mod p) or b =0 (mod p)
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=ab=0or b=0
Therefore, @5 =0= either g =0or s =0

SO, Jp in a finite integral domain
Thus Jp is a field.

10.3.10. Definition. An integral domain D is said to be of characteristic O if the relation ma =
0, where a0 is in D, and m is an integer, can hold only if m = 0.

10.3.11. Definition. An integral domain D is said to be of finite characteristic if there exists a
positive integer m such that ma =0 for all a € D.

10.3.12. Definition. Aring in which x? = x for all elements is called a Boolean ring.
10.3.13. Examples.

Q) (Z, +, o) is an integral domain with characteristic 0.
(i) (Zp, +,9) is an integral domain with characteristic p.
(i) (Zg, *,0) is a commutative ring but not an integral domain.

10.4 SOME PRELIMINARY RESULTS ON RINGS:
10.4.1. Problem. If every xR satisfies x? = x, prove that R must be commutative.

Solution. We are given that x?= X V x e R. So, for all x, x’=0 = x=0 (since x?= x)

Now for all X, y € R, consider (xy—xyx)? = (xy—xyx)(Xy—xyx),
= XYXY—XYXYX—XYX2Y+XyX2yX
= XYXYy—XYXYX—XyXy+XyXyX (since x>=Xx)
=0
= (Xy — xyx)>=0
= Xy —Xyx =0 (since x*=0 = x=0)
=Xy=xyx — (1)
Similarly, we can see that (yx—xyx)? =0
Therefore yx—xyx =0
= YX=XyXx — (2)
from (1) & (2) , xyx =xy=yx VX, yeR
e, Xy=yx VXx,yeR
Hence R is commutative.

10.4.2. Problem. Prove that if a,beR and n,m are integers, then (na)(mb) = (nm) (ab)

Solution. Let R be aring and a,beR
consider (na)(mb) = (a+a+....+a)(b+b+....+Dh)

n times m times

= ab+ab+,......+ab

mn times

= (mn) (ab)
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10.4.3. Problem. If D is an integral domain and if na =0 for some 0 # a in D and someinteger n
+0, prove that D is of finite characteristic.

Solution. Assume that D is an integral domain without loss of generality, wemay assume
that n is a positive integer.
We are given that na =0 for some 0 a<D and neNFor all

xeD we have
(na)x =0
= (a +a+t...... + a)x =0
n times
—sax+tax+...+tax =0
n times

:>a(X+X+ ....... +X):O

n times
=a(nx) = 0
Since D is an integral domain and a#0 we must have nx =0 ¥xeD
Then D is of finite characteristic.

10.4.4. Problem. Show that the commutative ring D is an integral domain if and only if for a,
b, c € D with a = 0the relation ab = ac implies that b = c.

Solution. Suppose D is an integral domain. Let a, b, ¢ e D witha#0
Assume that ab = ac

—ab—-ac=0
=a((b-¢)=0
= b-c=0 (*0#aeD&Disan integral domain)
= b=c
Conversely assume that ab = ac = b=c

10.4.5. Self Assessment Question. If a, b, ¢, d € R and R is a ring then evaluate(a +
b)(c + d).

10.4.6. Self Assessment Question. Prove that if a, b € R, then (a + b)?= a2+ ab + b? wherex?
= XX.

10.4.7. Self Assessment Question. Find out two examples for an integral domain which
are not fields.

10.5. MODEL EXAMINATION QUESTIONS:

10.5.1. Define a ring, commutative ring. Give two examples of each. Give an exampleof a
ring which is not commutative.

10.5.2. Prove that every field is an integral domain.
10.5.3. If Ris aring and a,beR, then show that (-a)(-b) = ab.

10.5.4. Prove that every finite integral domain is a field.
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10.5.5. Show that the characteristic of an integral domain is a prime number if D is offinite

characteristic

10.6 SUMMARY:

The abstract algebraic concepts. Ring, ring with unit element, commutative ring,
integral domain, division ring, field were introduced. The set of integers and the set of
rational numbers with usual addition and multiplication of numbers form commutative ring
with unit element. The set of even integers under the usual operations of addition and
multiplication forms a commutative ring without unit element. The set of integers modulo n

(where neZ* nx 2) forms a finite commutative ring.

A finite integral domain is a field. For any prime number p, the set of integers
modulo p forms a field. An integral domain D is of finite characteristic if there exists a
positive integer m such that ma = 0 for all a € D. If D is of finite characteristic then the
smallest positive integer p with pa = 0 for all a € D, is called the characteristic of the
integral domain D. This p is a prime number.

10.7 TECHNICAL TERMS:

Ring with unit element. Let (R,+,") bearing. If1l € Rsuchthata.1=1.a =a
for every a € R, then we say that R is a ring with
unit element

Commutative ring. Ifab=Db.a V a,beR,thenRissaid to be a

commutative ring.

Division ring. Aring R is said to be a division ring if R-{0} isa
group.
Integral Domain. A commutative ring is said to be an integral

domainif it has no zero divisors.

Field. A division ring is said to be a field if it is
commutative.

The pigeon hole If n objects are distributed over m places and if n>m
principle. then some place receives at least two objects.
Finite Characteristic. An integral domain D is said to be of finite

characteristic if there exists a positive integer m
such that ma=0 V a € D.

Characteristic. If D is of finite characteristic then we define the
characteristic of D to be the smallest positive
integer p such that pa=0 for alla € D.

10.8 ANSWERS TO SELF ASSESSMENT QUESTIONS:
10.2.6. Let Q be the set of all rational numbers and 0 == g € Q. Then g= E where a, b € Z with
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b= 0. Since g 0 we have that a= 0. Now = Q such that 2.q =22 =1. Thus = is the inverse
of the given non-zero element q :g e Q

10.4.5. LetRbearingand leta, b,c,d e R
consider (a+b) (c+d) = a(c+d) +b (c+d) (by the distributive law)
=ac +ad + bc + bd

10.4.6.LetRbearinganda, b € R

Consider (a + b)?2 =(a+b) (a+b)
a(@a+b)+b(a+h)
aa+ab+ba+bb
= a2+ ab + ba + b?

10.4.7. (i) The set of integers forms an integral domain which is not a field.
(i) The set of real quaternions forms an integral domain which is not a field.
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LESSON -11
HOMOMORPHISMS — IDEALS AND QUOTIENT

RINGS

OBJECTIVES:
The objectives of this lesson are to

%

% Introduce the concepts like homomorphism, kernel and isomorphism.
Discuss some examples for homomorphism and kernel.

Introduce the concepts like ideal, quotient ring.

Discuss some examples of ideals.

Know how to construct a quotient ring R/l for a given ideal |

STRUCTURE:

X/ X/
X X4

X/
X4

L)

X/
X4

L)

11.1. Introduction

11.2. Ring Homomorphism

11.3. Kernel of a homomorphism

11.4. Ideals

11.5. Quotient Rings

11.6. Model examination questions

11.7 Summary

11.8 Technical terms

11.9 Answers to self assessment questions
11.10 Suggested Readings

11.1. INTRODUCTION:

The notion of homomorphism is one of the central ideas that are common to all
aspects of modern algebra. By this, one means a mapping from one algebraic system to a
like algebraic system which preserves the structure.

Next we define ideal of a given ring R and construct the quotient ring of Rwith respect
to a given ideal in a natural way. Ideals play an important role in thestudy of rings.

11.2. RING HOMOMORPHISM’S:

11.2.1. Definition. A mapping ¢ from the ring R into the ring R* is said to be a
homomorphism if

() (ath)=¢(a) + ¢ (b)
(ii) (ab) = ¢ (a) ¢ (b). for all a,beR

11.2.2. Lemma. If ¢ is a homomorphism of R into R?, then
() (0)=0
(i) (-a) =— ¢ (a) for every aeR
Proof. (i) Consider ¢ (0) = ¢ (0+0)
=¢(0)+¢(0)

=0+6(0)=¢(0)+¢(0)
= 0=¢(0)
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Therefore, ¢ (0) =0
(i) LetaeR
Consider ¢ (a+(-a)) = ¢ (@)*+ ¢ (-a)
=00)=¢ @)+ ¢(-2)
=0=¢@)+o(-a) (by(D)
=0 (2)=-¢().
11.2.3. Note: If both R and R! have the respective unit elements 1 and 1! for their

multiplications it need not follow that ¢ (1) = 1*. However, if R* is an integral domain, or if
R! is arbitrary but ¢ is onto then ¢ (1) = 1*.

11.2.4. Self assessment question: Consider Z, the ring of integers, and the ring
J(V2) = {m+nV2/ mne Z}. Define ¢:J(V2)= J(¥'2) By ¢ (m + nv/'2) = m - nv/2. Show
that ¢ is an isomorphism.
11.3. KERNEL OF A HOMOMORPHISM:
11.3.1. Definition. If ¢ is a homomorphism of R into R then the Kernel of ¢ , 1(¢) is the set
of all elements a € R such that ¢ (a) =0, the zero element of R™.
11.3.2. Lemma. If ¢ is a homomorphism of R into R! with kernel I(¢) then

(1) 1(¢ ) is a subgroup of R under addition.

(i) Ifa e 1 (¢) and r € R then both ar and ra are in I(¢).
Proof. Assume that ¢ : R — R? be a homomorphism with kernel, 1(¢ ).
i.e, I(¢) ={a e R/ ¢ (a) = 0,the zero element R }.
Since 0 € 1 (), I (¢ ) is non-empty
clearly, 1 (¢ ) <R
(i) We have to prove that 1(¢ ) is a subgroup of R under addition.
Let x, y €l ()
Then ¢ (X) =0and ¢ (y) =0
Now ¢ (a+(-b)) = ¢ (a) +¢ (-b) (* ¢ is a homo morphism)

=¢@-¢ (b (¢ (-b) =—¢ (b))
=¢(@-b)=¢(@-¢(b)
=0-0
=0
=a-bel(p)
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Therefore, 1(¢ ) is a subgroup of R under addition.

(i Letael(p)andr eR
consider¢p (ra)=dp (@) o (r)=0 (~* ¢ is a homomorphism)

d(N=0=arel(d)
Also consider ¢ (ar) = ¢(r) ¢ (a) (~* ¢ is homomorphism)

=¢ (N0
=0
=arel(h)
Letyel(d)
Then¢ (y)=0
=0(y)=0¢(0)

= y=0(~ ¢ isone—to—one)
Therefore, Kernel of ¢, | (¢ ) = {0}
Conversely, suppose that I (¢) ={0}
We have to prove that ¢ is one -to- one
Leta,beR > ¢ (a) = ¢ (b)
=¢@-¢()=0
= ¢ (a-b) =0 (*+ ¢ is a homomorphism)
—a-bel(¢p)={0}
=ab=0
=a=b
Therefore, ¢ is one — to — one
Thus ¢ is an isomorphism from R into R
11.4. IDEALS:
11.4.1. Definition. A non empty subset U of a ring R is said to be an ideal of R of if

(1) U is a subgroup of R under addition.
(i) For every ueU and reR, both ur and ru are in U.

11.4.2. Lemma. If ¢ is a homomorphism of R into R! with kernel 1(¢), then I(¢) is an ideal of
R.

Proof. By lemma 11.3.2, 1(¢) is an ideal of R.

11.4.3. Problem. If U is an ideal of R and 1€U, prove that U =R

Sol. Assume that U is an ideal of R and 1€U clearly U c R
Letr eR
Since U is an ideal of R we have thatr eRand 1 € U impliesr.1€U. So, r € U.

Therefore, Rc U
Hence U=R
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11.4.4. Problem. If F is a field, prove that its only ideals are {0} and F itself

Sol. Suppose that F is a field

We know that {0} and F are ideals of F

Let U be an ideal of F such that U = {0}

Since U # {0}, Janelementy eU>y =0

But F being a fieldand y =0, 3y eF.

Since U is an ideal of F, yy ! eU. Butyy'=1eU
By 11.4.3,U=F.

11.4.5. Problem. Prove that any homomorphism of a field is either an isomorphism or takes
each element into 0.

Sol. Let F1, F2 be two fields and ¢ is a homomorphism from Fy into F .
If$ (X) =0 VxeFithen =0

Now suppose that ¢ =0

Then3aeFi>¢ (a) =0

We know that I(¢) is an ideal of F; .

By 11.4.4, either 1(¢ ) = {0} or I(¢) = F1

If 1($) = F1 then ¢ (X) =0 VxeF; so that ¢ = 0.

Which is a contradiction to ¢ = 0.

Therefore, 1(¢) = {0}

By 11.3.2, ¢ is an isomorphism.

11.4.6. Self Assessment question. If R is a commutative ring and a R,
(i) Show that a R = {ar/reR} is an ideal of R.
(ii) Show by an example that this may be false if R is not commutative.

11.4.7. Self assessment question. If U, V are ideal of R,
Let U+V = {u+v/ueU, veV). Prove that U +V is also an ideal.

11.4.8. Definition. Let R be a ring. A subset | of R is called a left ideal of R if
(1) 1'is a subgroup of R under addition.
(i) r eR, ael implies r ael.

11.4.9. Definition. Let R be a Ring. A subset | of R is called a right ideal of R if
(1) 1'is a subgroup of R under addition.
(i) r eR, ael implies arel.

11.4.10. Problem. If U,V are ideals of R let UV be the set of all elements that can be written
as finite sums of elements of the form uv, where ueU and veV. Prove that UV is ideal of R.

Solution. Suppose that U,V are ideals of R

UV ={iiuv,/u,elUv, €V for 1<i < n,nisa positive integer}

Let x,y eUV

Then x 2=, u;v; and y = ¥, w,z, for some u;, w; € U,v;, z; € V for each admissible values of
I.

Now, x-y = Zi= uv; — Lz Wiz,

=Xl uw + X, (—wyz,) € UV (by the definition of UV)
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So, x-y eUV

Therefore, UV is a subgroup of R under addition.

Letr eR

Consider xr = (XL, uv,) v
= X (uv)r
=2, u(v,r)eUV (¢ Visanideal, vireV)
= Xr eUVv

similarly, we can prove that rueUV
Therefore, UV is an ideal of R.

11.4.11. Self Assessment question. If U, V are ideals of a ring R, prove that UV c U n V.

11.4.12. Problem. If R isaring and a € R let r(a) = {x € R/ ax = 0}. Prove that r(a) is a
right ideal of R.

Solution. Suppose that Risaring and a € R

Letr(a) ={x e R/ax=0}

Suppose X, y € r(a)

Thenax=0and ay =0

Consider a(x —y) =ax—ay =0-0=0

So,x—y e r(a)

Thus r(a) is a subgroup of R under addition.

Next if x € r(a) and reR, we have a(xr) = (ax)r=0r =0
So, xr € r(a) for all xer(@) andr € R

Hence r(a) is a right ideal of R.

11.4.13. Problem. If R is a ring with unit element 1 and ¢ is a homomorphism of R onto R .
Prove that ¢ (1) is the unit element of R?

Solution. Assume that R is a ring with unit element 1 and ¢: R—> R! is an onto
homomorphism.
Letye R?
Since ¢ is onto, 3 xeR 3 ¢ (X) = .
Now y¢ (1) = ¢ (x) ¢ (1)
= ¢ (x.1) (*+ ¢ is homomorphism)
= ¢ (x)
=Yy
Similarly, $ (1) y =y
Hence ¢ (1) is the unit element of R™.

11.5. QUOTIENT RINGS.

11.5.1. Lemma. If U is an ideal of the ring R, the R/U is a ring and is a homomorphic image
of R.

Proof. Let R be a ring and U is an ideal of R define a relation ‘~* on R as follows.
a~biffa—DbeR forall a beR

Now we prove that ‘~’ is an equivalence relation on R.
Sincea—a=0€eR,VaeR, a~a, VaeR.
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So, the relation ‘~’ is reflexive
suppose a ~ b, a, beR
= a-beU
= b-aeU (~ Uisan ideal of R)
=b~a
So, the relation ‘~’ is symmetric.
Supposea~b,b~c,a b, ceR
= a—-beUand b-ceU
= ((@-b)+(b-c)eU
=a-ceU
=a~c¢C
So, the relation ‘~’ is transitive.
Hence the relation ‘~’ is an equivalence relation on R.
Now, the set of all equivalence classes under the relation ‘~” denoted by R/U is given by
R/U = {a+U /aeR}
We define ‘“+’ and © * > on R/U as follows.
()@+U)+(b+U)=(a+b)+U
(i) @+ V). (b+U)=ab+Uforall a, beR.
First we show that the operations defined above are well defined.
Suppose a + U =al+U and b + U = b + U, where a, a, b, b* e R.
—=a-aleUandb-bte U
=@-at)+(b-b)eU
=@+b-@+b)eU
=@+b)+U=(al+bl)+U
= @+U)+((+U) =@+ U)+(bl+ V)
So “+’ is well defined
Suppose a+U =al+Uand b + U =b!+ U, where a, al, b, b'eR
= a-ateUandb-bleU
= a—a' = uj and b— b' = u, for some uy, ueU
=a=a'+urand b=b'+u,
consider ab = (a*+ uy ) (b* + uz)
=al (b'+uz) +u (bt +uz)
=alb'+al uz+ ub' + us Uz
Since U is an ideal of R, we have that
atuz + uib + uuz €U ( al uzeU, uz bteU and uiuzeV)
put us = aluz + uib® + usuz
Then ab = alb! + us
So, ab+U=(albt+us)+U
=albl+ (us+ U) (-.use U, us+ U=U)
=alb'+U
i.e; (a+ U)(b + U) = (@+U)( bl+U)
Thus © « ’ is well defined.
Now, we show that (R/U, +, ¢ ) is a ring
Leta+U,b+ U, c+UeR/U.

(i) Consider (a+ U) +[(b+U) + (c+U)]=(a+ U) +[(b+c) + U]
=(@a+((b+c)+U
=((a+b)+c) +U
=[(@a+b)+U]+(c+U)
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=[@+U)+(b+U)]+(c+U)
Thus ‘+’ is associative in R/U

(i) Now(@a+U)+(b+U)=(a+b)+U
=(b+a+U
=(b+U)+(@+V)

This ‘+’ is commutative in R/U

(iii) Clearly 0 + UeR/U
Foranya+U e R/U,(a+U)+(0+U)=(a+0)+U=a+U
So, 0 + U is the additive identity in R/U.

(iv) Leta+ UeR/U

SinceaeR,-aeR

Clearly—-a+ U € R/U

Consider (a+U) +(-a+U)=(a+ (-a)) +U
=0+U
=U

So, —a + U is the additive inverse of a + U

Hence (R/U, +, ¢ ) is an abelian group.

(V) (@ + U)[(b + U)(c+ U)] = (a+U)(bc + V)

(a(be) + V)

((ab)c + L)

(@b + U)(c+ V)
=[@+U)(b+U)](c+U)

So, (R/U,+, *) is associative.

(vi) Consider (a+ U)[(b+U) +(c+U)]=(a+U) [(b+c) + U]
alb+c)+U

(ab + ac) +U
=(ab+U) + (ac + U)
=(@+U)b+U)+(a+U)(c+U)

Similarly, we can prove that
[@+U)+(b+U)(c+U)=(a+U)(c+U)+(b+U)c+U)
So, distributive laws are satisfied in R/U
Hence (R/U, +, ¢ ) is a ring.
Define¢:R—>R/Uby¢p(a)=a+UVaeR
Now, we show that ¢ is a homomorphism.
Leta,beR
¢ (a+b) =(a+Db)+ U (bythe definition of ¢ )
=(a+U)+(b+U)
= ¢ (a) + ¢ (b) ¢ (ab)
(@+b)+U
(a+U)+(b+U)
= ¢ (a) + ¢(b)
Therefore, ¢ is a homomorphism from Ry into R/U
Now, we prove that ¢ is onto
Let x + Ue R/U where x e R
By the definition, ¢ (x) =x+ U
ie; foranyx+U eR/U,Ixe R3¢ (X)=x+U
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So, ¢ is onto
Thus R/U is the homomorphic image of R.

11.5.2. Definition. The ring (R/U, +, *) is called the quotient ring of the ring R by the given
ideal U.
11.5.3. Note. If R is a commutative ring so is R/U
Foranya+U,b+ U e R/U
@+U)(b+U)=ab+U
=ba+U
=(b+U)(@+V)
So, R/U is commutative

11.5.4. Result. If ¢: R—>R/U then the kernel of ¢, 1($) = U.
Proof. Suppose ¢ : R — R/U is an onto homomorphism.
Let x € 1(9)
Now x € I(¢) < ¢ (x) =0inR/U

< x+U =0+U

<o xel
Then 1(¢) =U

11.5.5. Theorem. Let R, R? be rings ¢ is a homomorphism of R onto R* with kernel U. Then
R! is isomorphic to R/U. Moreover there is a one-to-one correspondence between the set of
ideals of R? and the set of ideals of R which contain U. This correspondence can be achieved
by associating with an ideal W* in R? the ideal W in R defined by W = {x € R/$(x) = W}.
With W so defined, R/W is isomorphic to RY/W! .

Proof. Suppose that ¢: R— R* be an onto homomorphism with kernel U.
Then ¢ (R) = {¢ (X) /x € R} =R*and 1(¢p)=U

(1) We have to prove that R1 is isomorphic to R/U
Define ¥ :RIU-> Rby¥Y (a+U)=¢(a), VaeR
Leta,b e R.
Y is well defined and one - to - one.
nowa+U=b+U<sa-beU
e da-b)=0 (:1(¢)=U)
< ¢(a) = ¢(b)
< Y@+U)=¥(b+U)
So, ¥ is well defined and one- to- one
Y is onto.
Let rt eR?
Since ¢ isonto, Ire R>¢ () =rt
clearly, r + Ue R/U and by the definition of ¥, ¥(r +U) = ¢ (r) = *
Y is homomorphism.
Consider ¥ [(a+ U) + (b + U)] =¥ [(a + b) + U)]
=¢(a+h)
=¢(a) + ¢ (b)
=¥(@+U)+¥(b+U)
also ¥ [(a+ U)(b + U)] = ¥(ab + U)
= ¢ (ab)
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=¢ (@) ¢ (b)
=¥Y(@+U)¥(b+U)
So, ¥ is a homomorphism.
Hence R/U is isomorphic to R*

(i) Let A = { J/J is an ideal of R containing R}
and B = {W' / W! is an ideal of R'}
Define f: A— B as follows.
LetJe A
We have to prove that ¢(J) is an ideal of RL.
Let al, ble ¢ (J)
Then al = ¢ (a) and b* = ¢ (b) for some a, b € J
Now, al— bt = ¢ (a) — ¢ (b)

=d(@a-b) (" ¢ iIs homomorphism)
Since Jis an ideal of R and a, be J
¢ (a—Db) € ¢ (J) and hence a — b e ¢ (J)
Letrt e R?
Since ¢ isonto, Ir e R> ¢(r) =1,
Now a* rt = ¢(a) ¢(r)

= d(ar) € ¢ (J) (- ¢ is homo and J is an ideal of R)

So, alrt € ¢ (J)
similarly, rtale ¢ (J)
Thus ¢(J) is an ideal of R* and hence ¢(J) € B

Now, we show the one- to -one correspondence between A and B.

Define f(J) = ¢ (J)
fis one - to - one.
Suppose f(J1 ) = f(J2) where J1, Jo € A
= ¢ ) =¢()
We have to prove that J1 = J,
Let xe J1
= ¢ (X) €6 (1) =6 ()
= ¢ (X)=¢ (y) forsomey e J
= ¢ (x-y) =0 inR1
=>x-yelld)=Uclk
=>XxX-Yyelk
Sincey € J and x-y € J2 and Jz is an ideal of R, (x-y) +ye J2
Clearly x=x -y +ye J»
=>Xelk
So, Ji < Jo. Similarly, we can prove that J, < J1
Hence J1 = J;
Then fis one - to - one
f is onto.
Let W'e B
Define W = ¢WH
= {x € R/p(X) € W'}
Now we claim that W is an ideal of R
Leta, be W
Then ¢(a), d(b) € W*
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=d(@-b)=¢@ - () W (-W!isanideal)
=>a-beW
Letre R
Consider ¢ (ar) = @) ¢ () e W' (- ¢ (8)e WH, ¢ (r)e Rt and W' is an ideal)
=are W
Similarly, we can prove that ra € W
Hence W is an ideal of R
Also, note that U = 1(¢) < ¢ 1(W') =W
So,UcW
i.e, for each W! € B, 3 We A > f(W) = ¢(W) = W*
Thus f is onto
Hence there is a one - to - one correspondence between the set of ideals of R! and the set of
ideals of R which contain U.
(iii) Finally, we have to prove that R/W is isomorphic to R* / W*
Consider the natural onto homomorphism n: R! —R*! / W* defined by n(r') = r'+ W for all r*
e R!
Put h =&t o ¢. By the composition of mappings, h is a mapping from R into R*.
Since ¢ and = are onto and homomorphism, h = = o ¢ is also an onto homomorphism. Let
xeR
Now, x € kerh< h(x) =0
< (mo¢)(x)=0
<n(e(x)=0
So()+WH=0+W!
S d(x) e WE
< xeW
This shows that ker h=W
By the fundamental theorem of homomorphism
R/ker h = R /w!
i.e R/W=R! /w!

11.6. MODEL EXAMINATION QUESTIONS.

11.6.1. If ¢: R = RYis ring homomorphism, then show that ker¢ is a subgroup of (R, +).
11.6.2. If ¢: R > Rt is ring homomorphism with ker ¢ = 0 < ¢ is a one-to-one mapping.
11.6.3. The homomorphism ¢ of R into R! is an isomorphism iff 1(¢) = {0}

11.6.4. If U is an ideal of the ring R, then R/U is a ring and is a homomorphic image of R.
11.6.5. If Fis a field, prove that its only ideals are (0) and F itself.

11.6.6. If Risaring and acR. Let r(a)={xeR/ax =0}. Prove that r(a) is a right ideal of R.

11.7 SUMMARY:

* A mapping ¢ from a ring R into a ring R? is said to be a ring homomorphism if it satisfies
(i) ¢ (at+b) = ¢ (a) +¢ (b) and (ii)dp(ab) = ¢ (@) ¢ (b), for all a,beR.

*If ¢ : R>R1 is a homomorphism then ¢(0)=0 and ¢ (—a) = —¢ (a), for all a eR.

* The set {xeR/¢ (x) = 0} is called the kernel of ¢ and is denoted by 1(¢ ) or ker ¢ .

* A mapping ¢: R— R!is one- to-one < ker ¢ ={0}.

* A non empty set U of aring R is said to be an ideal of R if

(1) U is subgroup of R under addition

(i) areU and raeU for any acU and reR.
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* If ¢: R— R! is homomorphism then ker ¢ is an ideal of R.
*1f U is an ideal of R then R/U = {r+U/reR} is a ring called the quotient ring. Also R/U is a
homomorphic image of R.

11.8 TECHNICAL TERMS:

Homomorphism
Kernel
Isomorphism
Left ideal

Right ideal
Ideal

11.9 ANSWERS TO SELF ASSESSMENT QUESTION:

11.2.4. Letm +ny2, p + qW2 € ]V2)

(p(m +n2) + (p + qv2)) = ¢ (m +p) + (n + q) V2)
=(m+p)-(n+q)2
:m+p—n\."2—qﬁ.."2
=(m-n/2)+ (- qV2)
= pm+n2) + dp(p + qV/2)

So, (x +y) = p(x) + p(y) for all x, y € J(/2)
¢ ((m +nv2)(p + qv2)) = p(mp + mqv'2 + npv/2 + nqV'2v2)
= (mp + 2nq + (mq + np) V2
= (mp + 2nq) — (nq + np)\2
Consider ¢ (m + ny2)(p + qv'2)) = (mp + 2nq) — (mq + np)v/'2
=(m—-n/2)(p - qv2)
= ¢ ((m+nV2)(p + q/2))
This proves that ¢ is a homomorphism
Suppose (m +ny2) =0
=m-m/2=0
=>m=0andn=0
= m+ny2=0
So, ¢ is one - to - one mapping
Form+m/2¢€ (wﬁ), the element m —ny/2 € ](wﬁ) 3¢p(m+n w.ﬁ) =m-—n+2
So ¢ is onto.
Hence ¢ is an isomorphism.

11.4.6. a) First we will show that aR is a sub group of R.
Suppose x, y € aR . Then x =ary and y = ar, for some ri, r. € R
Butx—y=ari—ar,=a(ri—r2) = ars for some rzeR.
So, Xx—y €aR.
Thus aR is a subgroup of R under addition.
Next if some xeaR and reR, Then we have x = ars for some rseR.
Also rx = xr (" R is a commutative ring)
= (ara)r
= a(rar)
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= ars for some rs € R.
So, for all xeaR and reR we have rx, xreaR
Thus aR is an ideal of R.

(b) Consider R = {[: sj /a,b,c,d eR}

Then R is a ring but not commutative.
Since (a b) (c d) _ (ac +0 ad+ D)

0 0/ o0 0 0
and (6 0G5 0)=("0° “5°)
So, R is not a commutative ring.
Leta=(; )
ThenaR:(é 3)(: 2) :(“-[Il'c b‘gd)

(g Jg)whereo_’:a+c'€Rand,[3=b+0lER
But aR is not a two sided ideal

For,(é 3)EaRandG i)ER
Wehave(i 1)[3 $]=G ﬂeR

There is a non-commutative ring R, aR need not be an ideal

11.4.7. Letx,y e U+V
Thenx=u+vandy=w+ z for some u, weUand v, z eV
now, Xx—y = (u+v) —(w+ 2)
=(U-w)+(v-2) e U+V

.. U+ Vis subgroup of (R, +)
(Since: U is an ideal, u —weU and since V is an ideal, v — z €V)
LetreRand x € U+V
Consider xr = (u + V)r

=ur+vreU+V
- U+ Visaright ideal of R
Similarly, we can prove that U + V is a left ideal of R.

11.4.11. Let xeUV

Then x = ¥, u, v, for some positive integer n, u; € Vand v; e Vforall1 <i<n.

Since ui €U, vi eV < Rand U is a right ideal of R, we have that uivi eU forall1 <i<n.
Since U is a subgroup of (R,+), we have x_, u;v;. So,x e U

Similarly, we can prove that xeV

Hence xeUNnV

- UVe UnVv
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LESSON -12
MORE IDEALS AND QUOTIENT RINGS

OBJECTIVES:
The objectives of this lesson are to

®,

% Define a maximal ideal ofaring R.
% Give some examples of maximal ideals in some concrete rings.
% Get a necessary and sufficient condition for R/M to be a field.

STRUCTURE:

12.1 Introduction

12.2 Maximal ideals

12.3 Model examination questions

12.4  Summary

12.5 Technical Terms

12.6 Answers to self assessment Questions
12.7 Suggested Readings

12.1 INTRODUCTION:

We continue the discussion of ideals and quotient rings of the previous lesson. We
have seen that some properties of a ring R are carried over to the quotient ring R/M, for
instance the commutative property and the existence of unit element. Also there are some
properties which are valid in a ring but not valid in the quotient ring. For example, Z is an
integral domain but Z4=Z4»is not an integral domain.

In this lesson, we will prove when a commutative ring with unit element will become
a field. Also we will prove the necessary and sufficient condition for R/M to be a field, where
M is an ideal of R.

12.2 MAXIMAL IDEAL:

12.2.1 Definition. Anideal M#R inaring R is said to be a maximal ideal of R if
whenever U is an ideal of R such that McU<CR, then either R=U or M=U.

12.2.2. Lemma. Let R be a commutative ring with unit element whose only ideals are (0)
and R itself. Then R is a field.

Proof. Let R be a commutative ring with unit element whose only ideals are (0) and R itself.
To prove R is a field, it is enough to show that every non-zero element has a multiplicative
inverse in R.

Let 0+a € R.

Consider the set Ra={xa /x € R}

Now we claim that Ra is an ideal of R
Let u, v ERa, thenu = ra,v=ro a for some ryre R.
So, u+v=ra+r,a

=(ritrp) a€Ra
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Similarly, -u=-rja=(-ry)a€Ra
Hence Ra is an additive subgroup of R
Moreover if reR, ru=r(r{a)=(rr1)a € Ra

Thus Ra is an ideal of R

Since R has the only ideals (0) and R itself either Ra = (0) or Ra=R
As 0 # a=1.a €Ra, Ra # (0)

So, Ra=R.

Then there exists an element b€ R such that ab =1

This shows that b is the inverse of ain R

Hence R is a field.

12.2.3. Problem. Let R be the ring of all the real valued, continuous functions on the closed

unit interval [0,1]. Let M = {f(x) R/ f(%) =0 }. Then M is a maximal ideal of R.
Sol. First we prove that M is an ideal of R.
Let f(x)_, a(x) EM
Then f(3) = g(3) =0 ( by the definition of M)
Clearly, ) - g(3) = 0-0=0
= f(x) ~g(x) €M (- f(x) EMe f(Z) =0)
So, M is an additive subgroup of R.
Let f(x)_E R,gxX) EM
Then g(§)=0
Now (5) 9(3) = f(5) 0 =0
and g5) ()= 0 f(3)=0
Thus f (X) g(X) EM....... Q)

~ Mis an ideal of R.
Now we prove that M is a maximal ideal of R. Suppose there is an ideal U of R such that
McU and M=U
Then there is a function g(x) €U and g(x) M
So that g(%) =a+ 0
Write f(x) =g(x) —a ......... 2)
Then ;) = g(5) a

=a-a=0

So, f(x) e McU

= f(x) EU
Now f(x) € U and g(x) € U implies that g(x)—f(x) €U(* U is an ideal of R)
But a = g(x) —f(x) €U (by 2)
Since R is the ring of all the real-valued, continuous functions on [0,1] and
a=0, there is a function I(x) €R such that I(x) = 1/a for all x € [0,1].
Since U is an ideal, 1=a.1/a = g(x) I(x) €U.
That is 1€U. So, U=R

~ M is a maximal ideal of R.
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12.2.4. Problem. Let Z be the ring of integers with respect to usual addition and
multiplication of numbers and let M be an ideal of Z. Then M is a maximal ideal of Z if and
only if M = (n) = p Z for some prime number p.

Sol. We know that for any n€ Z, (n) = nZ is an ideal of Z in of this form....(1)
Let M be an ideal of Z. Suppose that M is a maximal ideal of Z
By (1), M = p Z for some positive integer p € Z.
Now, we show that p is a prime number. If possible assume that p is not a prime number.
Thenp =abwithl<a<pand 1<b<p.
Write U = aZ
Then U is an ideal of Z.
Claim: MEU
Letn € M=pZ
—n = px for some x €Z
Now, n = px = (ab)x = a(bx) € aZz=U.
= ney
Then MEU

Since M is a maximal ideal of Z and MEUSZ, we have either U = M or U= Z.
If U=Z, then aZ = Z. So, a =1.Which is a contradiction.

Suppose U =M

SinceU=aZ,a=a.leazZz=U

clearly aeM=pZ

=yb=1
—=y=lorb=1
— b=1ora=p

Which is a contradiction.
-~ p is a prime number
Conversely, suppose that p is a prime number. We will show that M = pZ is a maximal ideal
of Z.
Suppose that N is an ideal of Z such that ME N SUS Z and M#N.
Claim. M=Z
By (1), N= NZ for some positive integer n.
Now peE pZ=M & N=NZ
—=p=nm for some integer m

If p/n then n=ps forse Z

= nEpZ=M

= NEM

= N=M ("M = N)
Which is a contradiction to M = N,
So, ptn

From (2), p/m
= m=pr for somer €Z
Now, p =nm =n (pr)= (np)r = (pn)r = p(nr)
=l=nrenZ=N
=1€EN
=N=Z
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Hence M = pZ is a maximal ideal of Z.

12.2.5. Self Assessment Question.
A commutative ring with identity is a field iff (0) is a maximal ideal.

12.2.6. Theorem. If R is a commutative ring with unit element and M is an ideal of R,
then M is a maximal ideal of R if and only if R/M is a field.

Proof. Assume that R is a commutative ring with unit element and M is an ideal of R.
Suppose that R/M is a field. Since R/M is a field, it’s only ideals are (0) =M/M and R/M
itself.

That is there is no ideal I/M of R/M such that M/M<I/McR/M...... Q)

By the known theorem, there is a one-to-one correspondence between the set of ideals
of R/M and the set ideals of R which contain M.

Under this correspondence, the ideal M of R corresponds to the ideal (0), R/M where
as the ideal R of R corresponds to the ideal R/M of R/M.....(2).
From (1) & (2), there no ideal I of R such that Mc | =R,
Hence M is a maximal ideal of R.

Conversely suppose that M is a maximal ideal of R.

As R is a commutative ring with unit element, R/M is also a commutative ring with
unit element. Since M is maximal ideal of R, we have that the only ideals of R which
contain M are M and R itself. That is there exists no ideal | of R. Such that M <l =R

So, by the same correspondence, there is no ideal I/M of R/M such that M/M < I/M = R/M.

Thus the only ideals of R/M are (0) = M/M and R/M itself.
By the known lemma, R/M is a field.

12.2.7. Problem: Let R be a ring with unit element, R not necessarily commutative, such that
the only right ideals of R are (0) and R. Prove that R is a division ring

Solution: Let R be a ring with unit element. To prove R is a division ring it is enough to prove
that every non-zero element of R has a multiplicative inverse in R.

Let0O=aER

Clearly, aR ={ax/x € R}

Now, we prove that a R is a right ideal of R

LetuyVvEaR

Then u = arqand v=ar, for some r1,ro€ R

Now, u-v = arq—ars
=a(ry—ro) ER

LetseER

Consider us = (arq)s

=a(ris) EaR
~aRisaright ideal of R
But, the only right ideals of R are (0) and R itself.
So, either ar = (0) or aR=R
Since 0% aeR, aR= (0) (0% aa.leaR)
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Sincel€ R, there exists beR such that 1=ab
Clearly b# 0

Now bR is a non-zero right ideal of R
ThenbR =R

=l=bcforc ER

consider a=a.l
=a(bc)

= (ab)c
=1.c
=C

-~ ab =1=ba
This shows that b is the inverse of a in R
Thus every non-zero element of R has a multiplicative inverse in R
Hence R is a division ring.

12.2.8. Problem: Let J be the ring of integers, p a prime number, and (p) the ideal of J
consisting of all multiples of p. Prove

(i)  J/(p) is isomorphic to Jp. the ring of integers mod p.
(i) Jp is a field.
Solution: Clearly, J,={0,1,2,........p — 1}

()  Define ¢ : J—Jp by ¢(n)=n for everyn e},

Where 7 is the equivalence class containing n under the relation modulo p.
Now, we prove that ¢ is an onto homomorphism.

Forany nq, no€J

G(ntn) —my Tz

L+

¢ (n)+a¢(n2) and

& (mn) =mgng

=ni.ng

=¢ () ¢ (n2)
~ @ is a ring homomorphism
Letm €Jp then mis an integerand 0 <m <p-1
Now m €Jand ¢(m) = m

~ ¢ is onto

By the known theorem, we have
J | kerd ;Jp.....(l)
Claim: ker¢ = (p) = pZ
Letx €]
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Now x E kerg¢g =@ (X) =0
=>i=0
= x—0is divisible by p
= x=py for somey €Z
= XepZ

“ kerp € pZ

Letre pZ = I = pu for some u €Z
= r—0is divisible by p
= r =0(mod p)
= ¢ (=0
= 7=0
= r ekerg

“+pZ < ker ¢
Hence kergg =pZ........... 2
From (1) & (2) J/(p) = Jp

(if)  Since p is a prime number, we have that (p) is a maximal ideal of J

By the known theorem, J/(p) is a field
As JI(p) = Jp, Jp is a field.
pp
12.3. MODEL EXAMINATION QUESTIONS:

12.3.1. Define the term maximal ideal. If F is a field, then prove that (o) is the maximal
ideal of F.

12.3.2. Let R be a commutative ring with unit element whose only ideals are (0) and R
itself. Then prove that R is a field.

12.3.3. If R is a commutative ring with unit element and M is an ideal of R, then M is a
maximal ideal of R if and only if R/M is a field.

12.3.4. Let R be a ring with unit element, R is not necessarily commutative, such that the
only right ideals of R are (0) and R. Prove that R is a division ring.

12.4 SUMMARY:

The Concept of maximal ideal of a ring is introduced. Some maximal ideals in some
concrete rings were given. We proved that a commutative ring R with unit element whose only
ideals are (0) and R itself then R is a field. Also we proved that an ideal M of a commutative
ring with unit element is maximal if and only if R/M is a field

12.5 TECHNICAL TERMS:
Maximal ideal Definition. 12.2.1
12.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:

12.2.4. Let R be a commutative ring with identity.

By 12.2.6,M is a maximal ideal of R iff R/M in a field

Taking M=(0), we get that (0) is a maximal ideal of R iff R/(0) is a field. But, R/(0) = R.
So, R is field.
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12.7 SUGGESTED READINGS:
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LESSON -13
THE FIELD OF QUOTIENT’S OF

AN INTEGRAL DOMAIN

OBJECTIVES:

The Objectives of this lesson are to

7
0’0

Define imbedding of a ring in another ring.

Define field of quotients of an integral domain

Define equivalence relation and equivalence classes

Prove a theorem namely, Every integral domain can be imbedded in a field.

3

*

3

*

7/
0’0

STRUCTURE:

13.1. Introduction

13.2. Imbeddings

13.3. Model examination questions

13.4 Summary

13.5 Technical terms

13.6 Answers to self assessment questions.
13.7 Suggested Readings

13.1. INTRODUCTION:

In this lesson we start with the integers Z and then build the rationals by taking all
quotients of integers (avoiding division by zero). We start with an integral domain and build
a field which contains all quotients of elements of theintegral domain. So, we are extending
an integral domain to a field.

13.2. IMBEDDINGS:

13.2.1. Definition: Aring R can be imbedded in a ring R? if there is an isomorphism of R into
R If R and R have unit elements 1 and 1! respectively, we insist that this isomorphism takes
1into 1%

13.2.2. Definition: A ring R* will be called an over ring or extension of R if R can be
imbedded in R™.

13.2.3. Theorem: Every integral domain can be imbedded in a field.
Proof: Let D be an integral domain

Let M = {(a,b)/a,beD and b = 0}

Here think of (a, b) as a/b
In M define a relation ~ as follows.

(a,b) ~(c,d)ifand only ifad = bc........ (1)
We claim that this defines an equivalence relation on M.
(i) Let(ab)eM
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Thena,be D (' by this definition of M)

Since D is an integral domain

we have that ab = ba
so, by (1) (a,b) ~(a,b)

. The relation ‘~’ is reflexive.
(i)  Let(ab), (c,d) eMand (a,b) ~ (c,d)

Then by (1), we have ad = bc
= bc =ad
—=cb=da
=(c,d) ~ (a,b)

.. the relation ‘~” is symmetric
(ili)  Let (ab), (c,d), (e,HeM and

(a,b) ~ (c,d) and (c,d) ~ (e,f)
—ad =bc and cf=de

— adf = bcf and bcf = bde

— adf = bde

— afd = bed (by commutative law)
—af=bhe (by the cancellation law)
= (ab) ~ (&)

.. the relation ‘~’ is transitive
Hence the relation ‘~’ is an equivalence relation.

For any (a,b)eM, let us denote the equivalence class containing (a,b) as
[a,b] write F = {[a,b]/(a,b) M}
We define the addition and multiplication on F as follows;

For any [a,b], [c,d] €F, [a,b]+[c,d] =[ad + bc, bd]
and [a,b].[c,d] = [ac, bd]

Now, we prove that the operations additions and multiplication are well defined.
Suppose [a,b] = [at,b'] and [c,d]=[c!,d}]
= (a,b)~(@%,b?) and (c,d)~(ct,d%)
— ab! =hal and cd® =dct e (2)
Claim: [a,b] + [c,d] = [a},b']+[ct, 0]
i.e., [ad+bc,bd] = [ad'+blct, bd!]
i.e., (ad+bc, bd) ~ (ad*+b’ct,bd?)
i.e., (ad+bc)b’d! = bd(ald +b'cl)
Consider (ad+bc)b'd! = adbd+bcb’d*
= ab'dd!+bcdlb!
= ba'dd! +bdctb! (by (2))
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bda'd'+ bdb'c!
bd (ald*+b'ct)
. addition is well defined on F
Claim: [a,b].[c,d] = [a%,b*].[ct,0Y]
i.e [ac, bd] =[alct,bld!]

i.e (ac, bd) ~ (alct,bdY)
i.e ac b'd!= bda‘c!

Consider acb'd'=ab'cd?

= ab'dc! (by (2)

= bda'c?
-.multiplication is well defined on f

Claim: addition is associative
let [a,b],[c,d], [e,f] eF

Consider ([a,b] + [c,d]) +[e,f]
=[ad + bc, bd] + [e,f]
= [(ad)f + (bc)f + (bd)e, (bd)f]
= [a(df) + b(cf)+b(de), (bd) f]
= [a(df)+b(cf +de), b(df)]
= [a,b]+[cf+de,df]
= [a.b]+([c.d]+[e.f])
Claim: addition is commutative
Let [a,b],[c,d]eF
Consider [a,b]+[c,d] = [ad+bc,bd]
= [bc+ad,db]
= [cb+da, db]
= [c.d]+[a,b]
Claim: Existence of zero element.
For any 0+ xeD, [0,x]eF and [a,b]eF

Consider [a,b] +[0,x] = [ax+b,bxX]
=[ ax, bx]

= [ab] (+ (& b) ~ (ax, bx))

. [0,x] is the additive identity
Claim: Existence of additive inverse.
For any [a,b]eF, [-a,b]eF (~—aeD)
Consider [a,b] + [-a,b] = [ab + b(-a), bb]
= [ab — ab, b?]
=[0, b’]
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=[0.y] (b*=y)

*' [-a, b] is the additive inverse of [a,b]
Claim: multiplication is associative
For any [a,b],[c,d],[e,f] eF
Consider ([a,b][c,d][e,f]) = [ac,bd][e,f]
= [(ac)e, (bd)f)]
= [a(ce), b(df)]
= [ab],[(ce,df)]
=[a,b] ([c,d].[e.f])
Claim: multiplication is commutative
For any [a,b] ,[c,d] eF
Consider [a,b].[c,d] = [ac,bd]
= [ca,db]

=[c,d].[a,b]
Claim: Existence of multiplicative identity.

For any 0 = deD, [d,d] acts as a multiplicative identity. Let [a,b]eF

Consider [a,b][d,d] = [ad,bd]

=[ab]
Claim: Existence of multiplicative inverse
Let [a,b] be a non zero element in F.

So,a=0and b=0. Clearly [b,a]eF
Consider [a,b].[b,a] = [ab, ba]

= [ab, ab]

= [d,d] (where d = ab)

Then [b,a] is the multiplicative inverse of [a,b]

Claim: Multiplication is distributive over addition
For any [a,b],[c,d],[e,f] eF

Consider [a,b].([c,d]+[e,f])

= [a,b].[cf+de,df]

= [a(cf+de),b(df)]

= [a(cf) + a(de), b(df)]
=[(a(cf) + a(ed)b,b(df)b]
= [((ac)f+(ae)d)b,bd(fb)]
= [(ac)fb+(ae)db,bd(bf)]
= [(ac)bf+bd(ae), bd(bf)]
= [ac, bd]+[ae, bf]

= [a,b].[c.d] + [a,b]. [e,f]
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Similarly, we can prove that
([a,b]+[c,d]).[e.f] = [a,b].[e.f]+[c,d].[e,f]
Hence (F,+,¢) is a field

I.e, F is a commutative division ring

Fix 0 = xeD

Define ¢ : D—F by ¢ (a) = [ax, X]
Clearly, ¢ is well - defined VaeD
Claim: ¢ is one-to one

Suppose a,b eD suchthat ¢ (a) =¢(h)

Now, ¢ (a)=¢(b) = [ax,X]=[bx,X]
= (ax,X)~(bx,x)
= ax®=xbx=bxx

— ax? = bx?

= a = b (by cancellation laws )

.. ¢ is one-to-one

Claim: ¢ is a homomorphism
Leta,beD

Consider ¢ (a+b) = [(a+b)x,x]
= [ax+bx,X]
= [(ax+bx)x,xX]
= [axx+bxx,xx]
= [axx+xbx,xx]

= [ax,X]+[bx,X]

¢ (@)+ ¢(b) and

[(ab)x,X]
= [(ab)xx,xX]

¢ (ab)

= [a(bx)x,xX]

= [a(xb)x,xX]

= [(a X)bx,xx]

= [ax,X].[bX,X]

= ¢ (a)+ o(b)
~.¢ is a homomorphism

Hence ¢ : D —F, defined by ¢ (a) =[ax, X] VaeD.

Where 0 = xeD be a fixed element, is an isomorphism of D into F.

Thus D can be imbedded in F.
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13.2.4. Note. The field constructed in the above theorem is called the field of quotients of D.
We may verify that if D = Z then F = Q.

13.2.5. Self Assessment Question.

Prove that the mapping ¢ : D — F defined by ¢ (a) =[a,1] is an isomorphism of
D into F.

13.2.6. Self Assessment Question.

Let R be an integral domain and F is the field of quotients of R. Then prove thatF is
the smallest field containing R.
13.3. MODEL EXAMINATION QUESTIONS:

13.3.1. Define the term imbedding. Show that every integral domain can be imbedded in a
field.

13.3.2. Prove that the mapping ¢: D — F defined by ¢ (a) = [a,1] is an isomorphism of D into
F

13.4 SUMMARY:

We learn that the ring of integers can be enlarged to the set of rational numberswhich
is a field. After defining imbedding, we have proved that every integral domain can be
imbedded in a field. The field F constructed is called the field ofquotients of the integral
domain D.

13.5 TECHNICAL TERMS:

Imbedded. A ring R is said to be imbedded in a ring R? if there exists an isomorphism ¢ : R
— RL. Moreover, if R and R1 are rings with unit elements 1 and 1 respectively. We insist that
¢(1)=1"
13.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:
13.2.5. First we prove that ¢ is well defined

Leta,b eD suchthata="b

Thenall=hbl1l (*1eD)

= all=1b1l

=(al1) ~ (b.1,1)

= [a.1,1]=[b.1,1]

=[a,1] = [b,1]

= (a) = ¢(b)
. ¢ is well defined

Also ¢ (a+b) = [a+b,1]
=[a.1+1.b, 1.1]

[a,1] + [b,1]
o(@) + ¢(b)
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and ¢ (a,b) = [ab,1]
= [ab,1.1]

=[a,1].[b,1]
= ¢(a)- ¢(b)
.¢ is a ring homomorphism
now we prove that ¢ is one- to- one
Suppose (@)= ¢(b)
= [a,1] = [b,1]
= (a,1) ~ (b,1)
=al=1b
= a=b
~.¢ isone - to -one
Hence ¢ is an one - to - one isomorphism

13.2.6. Let R be an integral domain and F be the field of quotients of R. Let F! be any field
containing R. Then for any xeF, x =ab!; a,beR; b=0.

Since R = F!, a, beF! and since F* is a field, it follows that x =ab*eF!. Thus F = F!. This

shows that F is the smallest field containing R.

(Let R be an integral domain and F is the field of quotients of R. Then every
element x € F can be expressed as x = ab —1 for some elements a,beR with b 0)

13.7 SUGGESTED READINGS:

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra™, Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.
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LESSON -14
EUCLIDEAN RINGS

OBJECTIVES:

The objectives of this lesson are to

*

DS

Define Euclidean ring, principal ideal ring, division ring, greatest common divisor, unit,
associates, prime element and relatively prime elements.

Prove some basic lemmas and theorems on the concepts defined.

Deduce that a Euclidean ring is a principal ideal ring.

Understand the difference between a unit and a unit element.

Prove the unique factorization theorem for Euclidean rings.

Determine all maximal ideals in an Euclidean ring.

Defining the domain of Gaussian integers J[i].

Study the ring of Gaussian integers, a particular Euclidean ring

Prove Fermat’s theorem.

STRUCTURE:

14.1. Introduction

14.2. Euclidean rings

14.3. Principal ideal rings

14.4. Prime elements

14.5. A particular Euclidean ring.

14.6. Model examination questions

14.7 Summary

14.8 Technical Terms

14.9 Answers to Self Assessment Questions.
14.10 Suggested Readings

X/
X4

X/ X/
XA XA

X/
X4

L)

X/
X4

L)

7/ X/ X/
LXK X4

14.1. INTRODUCTIONS:

We now formulate the concepts like divisibility, factorization, prime elements,
greatest common divisor etc for a general commutative ring. In this lesson, we study some
types of rings which possess the property similar to the property of division algorithm in the
ring Z of integers. We prove that any ideal A in an Euclidean ring R is of the form A = (a,).
Where (a,) = {xa,/xeR}. We also prove the unique factorization theorem. We give a simple,

precise answer to the question, what conditions improved on an ideal A = (a,) to ensure
that A is a maximal ideal of R? In the last part of this lesson, we are about to particularize
the notion of Euclidean ring to a concrete ring. The ring of Gaussian integers. Wedefine the set
of Gaussian integers and observed that the set of Gaussian integersforms an Euclidean ring.
Finally, we prove the Fermat’s theorem.

14.2. EUCLIDEAN RINGS:

14.2.1. Definition. An integral domain R is said to be Euclidean ring if for every a = 0 in
R there is defined a non-negative integer d(a) such that

(i)  Forall a,beR, both nonzero, d(a) < d(ab)

(i) For any a,beR, both non zero, there exist t,reR such that a = th + r where either r =
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0 or d(r) < d(b)
14.2.2. Example: The ring Z of integers is a Euclidean ring. Define d(a) = |a| for acZ—{0}

14.2.3. Theorem. Let R be a Euclidean ring and let Abe an ideal of R. Then there an element
ao€A such that A consists exactly of all a,x as x rangers over R.

Proof. If A= {0}, then ap = 0 and hence A= 0R=a,R

Thus we may assume that A = {0}. Hence there is an element a = 0 in A.

Consider the set {d(x)/0 = xe A} which is a nonempty set of non-negative integers.
Choose an element age A such that d (a,) is minimum

i.e., d(ao) = min {d(x)/0 = xe A}

Since A is an ideal of R and a,€ A we have that a,R = { a.x/xeR}c A........(1)

Claim: Ac a.R

Let beA. Clearlya,=0and b =0

Since R is an Euclidean ring there exists t, r eR such that b =t a,+r where r =0 or d(r) < d(ap)

Since a,eA and A is an ideal of R, t a,€A also since be A and ta,€A and A is an ideal we
have b—ta,eA. But r =b—ta,€A. If r # 0 then d(r) < d(a,), which is a contradiction to the
minimal of d(a,). Consequently r = 0 and hence b = ta,= a.t.

So, be{ ax/xeR}

s Ac {ax/xeR}......... 2
from (1) and (2) we have
A={ax/xeR}=a,R

14.2.4. Remark :

Q) In a commutative ring R with unit 1 for any a € R, we know that aR = Ra is an ideal.

(i) If A is an ideal of R such that acA. Then aRc A.

Therefore Ra = aR is the smallest ideal of R containing a and is denoted by (a)

14.2.5. Definition: An integral domain R with unit element is a principal ideal ring if every
ideal A in R is of the form A = (a) for some a € R.

14.2.6. Corollary. A Euclidean ring possesses a unit element.

Proof. Let R be a Euclidean ring.
Since R is an ideal of R itself by 14.2.3 we may conclude that R = (up) = ugR for some ug

eR.
Thus every element in R is a multiple of ug. InParticular, ug = ugc for some ceR.

IfacR thena = xuq for some xeR
Now consider ac = (Xug)c
= X(uge)
= XUO
=a
This is true for any xeR. Since R is commutative ac = a =ca for all acR



Algebra 14.3 Euclidean rings |

Hence c is the unit element in R
Thus R possesses a unit element.

14.3. PRINCIPLE IDEAL RINGS:

14.3.1. Definition. An integral domain R with unit element is a principal ideal ring if every
ideal A in R is of the form A = (a) for some aeR.

The smallest ideal containing a is denoted by (a) and is called the ideal generated by ‘a’.
14.3.2. Corollary. Every Euclidean ring is a principal ideal ring.

Proof. Let R be a Euclidean ring by 14.2.6, R contains a unit element. Also

14.2.3, every ideal A of R is of the form A = aR for some aeR.

Finally, by 14.2.4, if follows that A= aR = (a)
This shows that R is a principal ideal ring.

14.3.3. Definition. If a = 0 and b are in a commutative ring R then a is said to divide b if
there exists ceR such that b = ac. We shall denote a divides b by a/b & a does not divide b

by atb.

14.3.4. Remark. Let R be a commutative ring and let a,b,ceR. Then the following facts can
be verified easily.

(i) Ifalbandb|cthenalc

(i) Ifalbanda|cthena|(b+c)

(ili) Ifa|banda]bx forall xeR

14.3.5. Definition. If a,b €R then deR is said to be a greatest common divisor of a and b if
(i) d/aand d/b

(i)  wheneverc|aandc|bthenc |d
The gcdofaand b is denoted by (a, b) =d

14.3.6. Lemma. Let R be a Euclidean ring. Then any two elements a and b in R have a greatest
common divisor d. Moreover d = A a+ pbfor some L,ueR.

Proof. Let R be a Euclidean ring. By 14.2.6, R has a unit element.

Let a,beR
Write A = {ra +sb/r,seR}

We claim that A is an ideal of R
For this, take x,yeA.
Therefore x =rqa + sib, y =r2a + sob for some rq, ro, s1, 5o €R
Thenx+y=(rixr)a+ (s1xs2)b €A
Forany ueR, ux =u(rja+sqb)
= (uri)at+(usi))beA
Since R is commutative , xue A
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Thus Ais an ideal of R.

by 14.2.3, there exists an element deA such that A = dR = (d)
By the construction of A, d = Aa + ub for some A, u € R

Also a=1.a+0.beAand

b=0a+1lbeA
So,a=daq and b =day for somea;,ap €R
— d|aandd|b

i.e., dis acommon divisor a and b

Let ceRsuchthatc|aandc|b

By 14.3.4 (iii), c|Aaand c | ub

Again by 14.3.4(ii), c|( Aa + ub ) But

Aa+ ub=d. Thereforec|d

Thus d is a greatest common divisor of aand b and d = Aa + pub for some A, p € R

14.3.7. Definition. Let R be a commutative ring with unit element. An element acR is a
unit in R if there exists an element beR such that ab = 1.

14.3.8. Note. Do not confuse a unit with a unit element! A unit in a ring is an element whose
inverse is also in the ring.

14.3.9. Lemma. Let R be an integral domain with unit element and suppose that for a,beR
both a| b and b | a are true. Then a = ub, where u is a unit in R.

Proof. Let R be an integral domain with unit element and suppose that for a,beR botha| b
and b|aare true.

Sincea| b, b=xa for some xeR and since b | a, a =yb for some yeR

Then b = xa
= X(yb)

= (xy)b

= b=(xy)b

= 1b=(xy)b

= 1=(xy) (by cancellation laws)
= xy=1

— yx =1(.. R usacommutative ring)
By the definition, y is a unit in R.
Hence a = yb where y isa unit inR
If we take u =y then a = ub where u is a unit in R.

14.3.10. Definition. Let R bea commutative ring with unit element. Two elementsand b in R
are said to be associates if b = ua for some unit u in R.

14.3.11. Problem. In a commutative ring with unit element prove that the relation a is an
associative of b is an equivalence relation.

Solution. Let R be a commutative ring with unit element.
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For a,beR, define a~b iff a is an associate of b.
That is a~b < b = ua for some unit ueR.

Since a=1.aand 1 is a unit element, a is an associate of a itself.

That is a ~ a. Therefore the relation ‘~’ is reflexive
Suppose a~b. So, b = ua for some unit u in R
Since u is a unit, there exists weR such that wu =1
Now wb = w(ua) = (wu)a =1l.a=a

= wb=a andw is a unit

= a=wb and w is a unit

= b~a

Therefore the relation ‘~’is symmetric
suppose a~b and b~c
— b=ua and c= whb for some units u, w in R since u and w are units, there exists
v,zeR such that uv=1 and wz =1.
As (uw) (zv) = u(wz)v = u.1l.v=uv=1, uw is also a unit.
Now ¢ =wb=w(ua) =(wu)a = (uw)a and uw is a unit. That c=(uw)a, uw isa unit in R.
This implies a~c.
Therefore the relation ‘~’ is transitive.
Thus the relation ‘~’ is an equivalence relation.

14.3.12. Problem. In a Euclidean ring prove that any two greatest common divisors of a and
b are associates.

Solution. Let dq, dy be two greatest common divisors of a and b. Since d4 is common
divisor of a and b and d» is a g.c.d of a and b by 14.3.5, d4|d>.

Similarly, since dz is a common divisor ofaand b and dq isa g.c.dofa and b by

14.3.5 do|d1.

Since d1|d> and do|dq, 14.3.9, we have d1=ud, for some unit u in R.Thus

dq, do are associates.

14.3.13. Lemma. Let R be a Euclidean ring and a = 0, beR. If b = 0 is not a unit in R,then
d(a) <d (ab).

Proof. Let R be a Euclidean ring and let a,peR where a = 0.

Assume that b = 0 is not a unit in R. Since aeR, A = (a) = {xa/xeR} in an ideal of R. For any
yeA we have y = xa for some xeR.

Since R is a Euclidean ring by 14.2.1, we have d(a) < d(xa) for all 0 = xeR.

That is d(a) < d(y) for all 0 = yeA.

This shows that d(a) = min {d(y)/0 = yeA}......... (1)

As acA and beR, abeA and hence d(a) < d(ab)

If possible assume that d(a) = d(ab) ......... (2)

From (1) and (2) we have

d(ab) = d(a) = min{ d(y)/0 = ye A}

Since abe A and A is an ideal of R it follows that (ab)R < A. Now we prove that A < (ab)R
Let 0 = xeA
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Since R is an Euclidean ring, for x and ab, there exists t, r ER 3 x = (ab)t +r
where r =0 or d(r) < d(ab)......... 3)
Now r = X —(ab)te A
It r = 0 then from (3), d(r) < d(ab) which is a contradiction to our assumption d(a) = d(ab).
Therefore r =0
= x—(ab)t=0
= X = (ab)t e(ab) R Therefore A c (ab)R
Hence A=(ab) R
Now 0= aeA = (ab) R

= a = (ab)y for some yeR
—a-—(ab)y=0
— a(1-by) =0
= 1-by=0 (~a=0andR is an integral domain)
= by =1
= b is a unit
Which is a contradiction to the fact that b is not a unit.
-.d(a) <d(ab)
14.3.14. Self Assessment Question.

Prove that a necessary and sufficient condition that the element a in the Euclidean ring be a
unit is that d(a) = d(1).

14.4. PRIME ELEMENTS:

14.4.1. Definition. In the Euclidean ring R a non unit r is said to be a prime elementof R if
whenever 7 = ab, where a,b are in R then one of a or b is a unit in R.

A prime element is an element in R which cannot be factored in R in a non-trivial way.

14.4.2. Lemma. Let R be a Euclidean ring. Then every element in R is either a unit in R or can
be written as the product of a finite number of prime elements of R.

Proof. Let R be a Euclidean ring and let acR. Here the proof is by induction ond(a). Since
d(1) <d(1.x) =d(x)
for all 0 # xeR, we have d(1) = min{d(x)/0 # xeR}

If d(a) =d(1) then by 14.3.14, we get that a is a unit.

Assume that the result is true for all xeR such that d(x) <d(a).

If a is a prime element then there is nothing to prove.

So, suppose that a is not a prime element.

Then a = bc, where neither b nor ¢ is a unit in R.

By 14.3.13, d(b) < d(bc) = d(a) and also d(c) < d(bc) = d(a)

Thus by over induction hypothesis, we get that b = 1 w 2.....t nand

C=mimy....... .y, Where ;, 1< i <mand 7}, 1< i < mare prime elements of R.
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Hence the lemma.

14.4.3. Definition: In the Euclidean ring R, a and b are said to be relatively prime if
their greatest common divisor is a unit of R.

14.4.4. Lemma. Let R be a Euclidean ring. Suppose that for a,b,c €R, a |bc but (a,b) =1.
Then alc.

Proof. Let R be a Euclidean ring

Suppose that a,b,ceR such that a |bc and (a,b) =1.By 14.3.6, the g.c.d 1 can be written as
1=)a+ pubforsomei,pueR

=cl=c(ra+ub)

=>c=cia+cub

Sincea|bc,a|cubalsosincea|cAa we havea| (cub + cia)

Thatisa]c.

14.4.5. Lemma. If « is a prime element in the Euclidean ring R and = /ab where a,beR then
nt divides at least one of a or b.

Proof. Let R be a Euclidean ring. Assume that = is a prime element in R such that r /ab
where a,beR

Suppose that  t a

we now show that r /b

write d = (r ,a) where deR

Thend|r and d/a....... D

Since d/m and & is a prime element, either d= = or d is a unit

Ifd = thenby (1), n /R

Which is a contradiction to our supposition. In the other case, we have that (r, a) =1
Since (m, @) =1 and = /ab by 14.4.4, &t /b.

14.4.6. Corollary. If r is a prime element in the Euclidean ring R and x | aq, a,...,athen
n divides at least one ap,a,...... ap.

Proof. Let R be a Euclidean ring and let z be a prime element in R such that

n|aq,8p,...8n where aj,a,,....aqeR.

We will prove this by using induction onn. If n =1 then x| a1
Suppose the result is true for n—1

Thatis = |aq,a0,....... an_1

Givennlag,ap . ah-12n

If = /by, then the proof is over

suppose «t £ bn.

By 14.4.5, weconclude that nlag, ap an-1-
Now by induction hypothesis, if follows that x /a; for some i.
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14.4.7. Theorem. (Unique Factorization Theorem). Let R be a Euclidean ring and

a = 0 anon-unit in R. Suppose that a= w1 m 2............ Tn=my s ......T5 Where the m; and

m; are prime elements of R. Then n = m and each i, 1< i < n is an associate of some 7}, 1<
<m and conversely each =} is an associate of some nq.

Proof. Let R be a Euclidean ring and a = 0 be a non-unit in R.

H — 1. 1 1 . 1 H
Giventhat a= nq o Tp=T; T ..., Where the m;s and 7; are prime elements of

Since nyjg, my) w1 My (YaSmiws ... Ty ) By 14.4.6, np 1 for some 1<j<m

Without loss of generality, we may assume j =1

Then nqjy = my= uarq for some ure R. Since mry is prime, either us is a unit or 71 is a unit.
As 71 is a prime element, us is a unit.

This shows that , is an associate m;

From (1), muma..ccoennn.e. Tn=Ulm, 3 ...,

SN2 Tpn=Ty U1y ... Ty
N S Tp= Ui md ..., (bycancellation laws)........ (2)
Since mpma ... T, wo UL T ... (by (2)

Again 14.4.6, n2|rr} forsome2<j<m

Without loss of generality, we may assume that j =2
Then ma|m;=m3= Uz, some unit usin R

From (2), we have

a
=
I
=
[
e
=
c
N
L

(by cancellation law)
______________ Tp= Uiz ..., (by cancellation law)

By repeating the above argument upto n steps, the left hand side becomes 1 and the right hand
side becomes UjUy......Up T, 4.7,

Therefore n< m (~ m;’s are non-units)

Similarly, we can prove then m<n
Thusn=m

In the above process we proved that each m;, 1 <i<nis an associate of some m, 1<j<m
and each my, 1 <k <mis an associate of m;, 1< g <n.

14.4.8. Result. Every non-zero element in a Euclidean ring R can be uniquely written(up to
association) as a product of prime elements or is a unit in R.

Proof. Write the proofs 14.4.2 and 14.4.7

14.4.9. Lemma. The ideal A=(ap) is a maximal ideal of the Euclideanring R ifand only if a is

a prime element of R.
Proof. Let R be a Euclidean ring
Assume that A= (ap) is a maximal ideal of R. We have to prove that ag is a primeelement of R

If possible, suppose that ag is not a prime element of R. Then ag=bc for some nonunit b and ¢
of R.
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Write B = (b). Then B is an ideal of R.
Now a =bc € (b) < B.
= d B
= A=(a)cB
Therefore B is an ideal of R and A =« Bc R.
Now we claim that B = A and B = R.
If possible suppose that A=B
Thenb e B= A = (ao)
= b= x ag for some xeR
= b= xbc for some xeR
= b= bxc for some xeR
—=1= xc for some xeR
= ‘c’isaunitinR
This is a contradiction to the fact that ¢ is not a unit.
~AzB
Again, if possible suppose that B = R
—=1eB =(b)
= 1=ybforsomeyeR
= bisaunitinR
This is contradiction to the fact that b is not a unit
~B#R
Thus we get an ideal B of R such that A B c R. This is a contradiction to A is a maximal
ideal of R.
Thus ag is a prime element of R.
Conversely, Assume that ag is a prime element of R.
We have to prove that A = (ag) is a maximal ideal of R.

Let U be an ideal of r suchthat AcUcR.

Since R is a Euclidean ring there exists ueU such that U = (u)
Clearly aoe Ac U = (u)

= ag=tuforsome teR

Since ag is a prime element of R either t is a unit or u is a unit in R.

If uisaunitinR then Ru=R and hence U=Ru =R. Thatisu=R

If t is a unit in R then ao=tu implies u=t* ap € (ag) = A . That is ueA.
Now U = (u) < Aand hence U = A.

Thus A is a maximal ideal of R.

14.4.10. Self Assessment Question.

Prove that if an ideal U of a ring R contains a unit of R, Then U =R

14.5. APARTICULAR EUCLIDEAN RING:

14.5.1. Note. (i) Let J[i] denote the set of all complex numbers of the form a+bi wherea and b

are integers. Under the usual addition and multiplication of complex numbers J[i] forms an

integral domain called the domain of Gaussian integers.

(ii) For 0= xe J[i], d(x) is a non negative integer. i.e if x = a+ ib where a,b €Z, d(x) = a>+b?
> 1.
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(iii) For any two non zero Gaussian integers, x= aq+ibqand xp= ao+ibo we have
d(xy) = d[(a1+ib1 )(ap+iby)]
= d[(ajap—hqby)+i(asbot+hqar)]
= (agap — bybp)® + (a1b7 + byap)?
= (aga9)*+ (b1bo)* — 2 ajaghq b2 + (a1hy )*+(bjan)* +(aghy + 2 ajayby by

- a12a22_{_ b12b22+ a12b22 + b12 a22
= (ag%+ by? ) (3% by?)

= d(x)d(y)
Therefore d(xy) = d(x) d(y) for any two Gaussian integers.
(iv)  Letx,y €J[i] such that x = 0, y = 0. Then by (ii), we get that d(x) > 1 and d(y) > 1
Also d(x) = d(x).1 < d(x) d(y) = d(xy)
= d(x) < d(x.y)

(v) Let u,vel[i] there exist t,reJ[i] such that v = tu+r.
Where r =0 or d(r) < d(u),|r| = n/2

14.5.2. Theorem. J[i] is a Euclidean ring.

Proof. We know that J[i] is an integral domain with unity with respect to the usual
addition and multiplication of complex numbers.

For each 0 # xeJ[i] where x = a+ib, define d(x) = a?+b? and clearly d(x) > 1.

Also by 14.5.1 (ii), for any 0 = X, 0 = y in J[i], d(X) < d(xy)

Let x,yeJ[i] such that x # 0

Case(i). Suppose that y = a+ib is an arbitrary element in J[i] and X =n = n+i0 where n is a
positive integer.

By the division algorithm for the ring of integers we can find integers u, v such

that a = un +uz and b= vn+vi where u; and vi are integers satisfying |ui| = n/2

and |v1| = n/2. Let t=u+iv and r=u;+iva
theny = a+ib = (Un+uq)+i(vn+vq) = n(U+iv) + (U1 +ivy) =nt+r=tx+r (~ x=n)
Ifr=0thend(r) =d(uq+ivq)

= U+ vp?

< (n/2)? + (n/2)?
= 2 (n/4)

= (n/2)%<n?
=d(n+i0)

= d(x)

Thus there exists two elements, t,r e J[i] such that y = tx + r where either r = 0 or
d(r) < d(x)

Case (ii). Let 0 = x and yeJ[i]

Writem=x x .



Algebra 14.11 Euclidean rings |

Clearly m is a positive integer and x is the complex conjugates of x.
Observe that y xeJ[i] (~ yelJ[i], x €J[i] and J[i] is an integral domain)
by case (i) , 3 to,roeJ[i] such that yix = tom+r, where either ro=0 or d(ro)<d(m).
Ifro=0thenyx =tym =tyxx andso y=tyX (by the cancellation laws)
S0,y =1g x +0 =tgx+rg.
Suppose d(rg) < d(m).
Then we have yx = tym+r,
= yx —tom =10
= d(yx -tgm) =d(ry) <d(m) = d(xx)
= d(yx —tgxx) <d(xx)
= d(y-tpx) d(x) < d(x) d(¥)
= d((y-txx)(¥)) <d(x)d(¥)
= d(y-tgx) <
d(x) Let r' =y — tox
Theny = tox+r* and d(r") < d(x)
Hence J[1] is an Euclidean ring.

14.5.3. Lemma. Let p be a prime integer and suppose that for some integer c relatively prime
to p we find integers x and y, such that x?+y?=cp. Then p can be written as the sum of squares
of two integers, that is there exist integers a and b such that p= a?+b?.

Proof. The ring of integers Z is a sub ring of J[i].

Part (i) In this part, we show that p is not a prime element of J[i].

If possible, suppose that p is a prime element of J[i].

Since cp = x2+y? = (x+iy) (x—iy), 14.4.5, p | (x+iy) or p | (x=iy) in J[i].

p|(x+iy) then (x+iy) = p(u +iw)

S0, X =puandy=pw

since p | puand p | pw, p |(pu-ipw) = p|(x-iy)

Therefore p? | (x+iy) (x-iy)

= p?| (X*+y?)
= p?lcp

=P|c

Which is a contradiction to p and c are relatively prime.
In a similar way, if p| (x-iy) then we will get a contradictionThus p is
not a prime element in J[i]
Part(ii) . Since p is not a prime element in J[i],
we have that p = (a+ib) (g +id) for some non units a+ib, g+id <J[i]
Since a+ib , g +id are non units, by 14.5.1 (ii), we have a?+b? > 1 and g?+d? >1.
Since p = (a+ib) (g+id) is an integer it follows easily that p = (a—ib)(g—id)
Thus p? = p.p = (a+ib) (g+id) (a—ib) (g—id)
= (a®+b?)(g*+d?)

= (a+b?) | p°
—a’+b?>=1orporp? (~pisprime)
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we know that a?+b? =1

If a?+b? = p? = (a?+b?)(g?+d?) then g*+d*=1
Which is a contradiction.

Hence a®+b? =p

Hence the lemma.

14.5.4. Lemma. If pisaprime number of the form4n+1, then we can solve the congruence

x?= —1 mod p.

Proof. Assume that p is a prime number of the 4n+1

ie., p=4n+l
=p-1=4n
=2 oon...... (1)

Let x=1.2.3........ pl_(zly

Then x = (2n)! (By (1)), which is a product of an even number of terms

Therefore we can write of terms

x= (-1)(-2)(-3) ....... (-p:_.1 )

Also we know that for any integers k,
(p-k) = (k) mod p
= —k=(pKk)modp
For k=1,-1=(p-1) mod p
For k=2,-2 = (p—2) mod p and so on
Consider x* =x.Xx

—(123....... F_é) (-1)(-2)(-3) ....... (E )
= (1.23..... Z2)((p-D)(P-D(P-3) ... )
—(123....... E ) (E-D)(P-2)(p-3) ....... ®-%)

v+l

= (12300 EE)E) (-2 (PrD)

=(p-1)!
x> = -1 modp
(by willson’s theorem , if p is a prime number the (p—1)! = -1 mod p)

14.5.5. Lemma (Fermat). If p is a prime number of the form 4n+1, then p = a®+b?
forsome integers a, b.

Proof. First we show that there exists an integer x with 0< x < p—1 such that

x? =—1(mod p)

By 14.5.4, there exists y such that y 2 = -1(mod p).....(1)

By the division algorithm for y, p there exists two integers a and x such thaty = ap+x
where x =0 or O<x< p-1.

If x=0theny =ap+0=0(mod p) and so 0 = y?> = —1(mod p) = 0 =—1(mod p).
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That is 1 is divisible by p. Which is a contradiction to p is prime. So, x # 0.

Therefore the inequality 0 < x < p holds
consider y?= (ap+x)?=a2p?+x°+2apx
= y?-x? = a’p?+2apx

= p(a’p+2ax)
=Yy?—x? is divisible by p
..................................................................... = y?=x%(mod p).......(2)
from (1) and (2),

we get x2=y? = —1(mod p)
Therefore there exists 0 < x < p—1 such that x’= —1(mod p)......(3)

Part(ii): Now we will find a number such that
ls| <Z and s? =—1(mod p)

If |x| <Z thens =xwill do

Otherwise x > p/2 = — x < — (p/2)
Writes =p — X

now s=p -x < p —(p/2) = (p/2)
Consider s? = (p—X)(p—x) = p>—2px+x?

= §*x* = p(p-2x)
=p|s* %

.................................................... =s2=x2mod p.......(4)
Thus there exists an integer‘s’ such that |s|<p /2 and s?=-1(mod p)
Part (iii). We have s? = — 1(mod p)

— s?+1 is divisible by p
— s2+1 =tp for some integer t
Consider tp = s>+1 < (p/2)? +1 = p?+4/4 < p?
=>tp<p’=t<p
Since p is prime and t < p, we have that t and p are relatively prime
by 14.5.3, p = a? + b? for some integers a & b

14.5.6. Problem. Find all the units of J[i]

Solution. Since J[i] is a Euclidean ring, an element u is a unit of j[i] if and only if d(u) =
d(1)

Letu=atib

Then u is a unit iff d(u) = a®+b? =d(1) = 12+02

ie a’+b2=1

But the integral solutions of a>+b> =1 area=0,b=+1landa=+1,b=0

Thus i, —i, 1, -1 are the only units J[i].

14.5.7. Self Assessment question. If a+ib is not a unit of J[i], prove a?+b? >1

14.6. MODEL EXAMINATION QUESTIONS:

14.6.1. Prove that a Euclidean ring possess a unit element.
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14.6.2. State and prove unique factorization theorem.
14.6.3. Prove that J[i] is a Euclidean ring.
14.6.4. If p is a prime number of the form 4n+1 then p = a?+b? for some integers a, b

14.7 SUMMARY:

The abstract algebraic concepts like Euclidean ring, principal ideal ring, division,
g.c.d, unit, associate, prime element, relatively, prime were introduced. We have established
that a Euclidean ring has a unit element. Every Euclidean ring is a principle ideal ring. The
relation of being associates is an equivalence relation. In an Euclidean ring any two greatest
common divisors of two given elements are associates. We proved the unique factorization
theorem. Every non-zero element in an Euclidean ring R is either unit in R or it can be
uniquely written (upto associates) as a product of prime elements. An ideal A = (ag) of a

Eulidean ring R is a maximal ideal of R< a is a prime eIeOment of R.
Later, we have defined the domain of Gaussian integers J[i]. We have provedthat J[i] is
Euclidean ring. The odd prime numbers can be divided into two classes. And those which have

a remainder of 3 on division by 4. We showed that everyprime number of the first kind can
be written as the sum of two squares.

14.8 TECHNICAL TERMS:

Euclidean ring Definition. An integral domain R is said to be a Euclideanring if for every a
# 0 in R there is defined a non-negative integer d(a) such that

(i)  Forall a,beR, both nonzero, d(a) < d(ab)

(i)  Foranya,b e R, both non zero, there exist t,reR such that a = tb = r whereeither r =
0 or d(a) < d(b).

Principal ideal ring Definition. An integral domain R with unit element is a principal ideal
ring if every ideal A in R is of the form A = (a) for some aeR.

Greatest common divisor Definition. If a,b €R then deR is said to be a greatest
common divisor of a and b if

(i) d/aandd/b (i) wheneverc|aandc|bthenc |d

The g cd ofaand b is denoted by (a,b) =d

Unit. Let R be a commutative ring with unit element. An element aeR is a unit in R if there
exists an element beR such that ab = 1.

Relatively Prime Definition; In the Euclidean ring R, a and b are said to be relatively
prime if their greatest common divisor is a unit of R.

14.9 ANSWERS TO SELF ASSESSMENT QUESTIONS:

14.3.14. If a is a unit then there exists beR. Such thatab = 1

Now d(a) < d(ab) = d(1)

Also d(1) <d(1.a)=da

Hence d(a) = d(1)

Conversely, suppose d(a) = d(1)

If a is not a unit then by 14.3.13, we have that d(1) < d(1.a) = d(a), which is
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contradiction.

Hence a is a unit.

14.5.7. Since a +ib = O we have thata=0orb =0
Ifa=0thena®+h®>>a>>1

If b = 0 then a®+b? > b%>1

Therefore in any case, a>+b? > 1

If a>+b? = 1 then a + ib is a unit, which is a contradiction
Hence a’+b*>1

14.10 SUGGESTED READINGS:
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LESSON - 15
POLYNOMIAL RINGS

OBJECTIVES
The objectives of this lesson are to

% Define polynomials, equality, addition, multiplication, degree, irreducibility of
polynomials and the ring of polynomial F[x] over a field F.

% Prove F[x] is an integral domain.

Understand and prove the division algorithm for polynomials.

Apply the division algorithm to solve some problems and further theorems.

» Prove F[x] is a principal ideal ring.

STRUCTURE

15.1. Introduction

15.2. Polynomial rings

15.3. Irreducible Polynomials

15.4. Model examination questions

15.5 Summary

15.6 Technical Terms

15.7 Answers to Self Assessment Questions
15.8 Suggested Readings

15.1. INTRODUCTION

%

X/ X/
X X4

DS

Consider expressions of the type x*—-4x+3or x* +%x3 —%xz +%. These are called

polynomial expressions. The first expression x*—4x+3 is called as a polynomial with
. . . 1 1 1. .
integer coefficients and the second expression x* +ZX3 _EXZ +§ is called as a polynomial

with rational coefficients. We are familiar with their properties like factorization, nature of
roots etc. In this lesson, we shall consider the set R[x] of all polynomial expressions with
coefficients from a given commutative ring R with unit element. We shall define addition and
multiplication on R[x] forms a ring with respect to these operations. This ring will be a
Euclidean ring when R is a field. So we can apply the results already obtained for Euclidean
rings to this ring R[x] when R is a field. We state and prove the division algorithm in R[x].

15.2. POLYNOMIAL RINGS:

15.2.1. Definition: Let F be a field, the ring of polynomials in the indeterminate x denoted
by F[x] and is defined as the set of all symbols a, + a,x + a,x* + azx® + -+ a,x™, where
n can be any non-negative integer and the coefficients a,, a,, a,,a;, ..., a, are all elements of
F,ie.,

Flx] ={ay,+ ax+ a,x* +azx*+--+a,x"| n is a non - negative integer,
a; EF,1=i=n}

Every element of F[x] is a polynomial with coefficients from F or polynomial over F.

15.2.2. Definition: Let F be a field and x be an indeterminate. If p(x),q(x) € F[x], then
p(x) =ay, +a,x +a,x* +a;x*+ -+ a,x™, for some m is non-negative integer,
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a,€EF, 1<i=<=m and g(x) =b, + byx+ b,x* + byx®+ -+ b x", for some n is non-
negative integer, b, E F,1 <i < n.
() p(x), gq(x)are said to be equal if their corresponding coefficients are equal.
i.e. p(x) =q(x) iffa, = b, forall i = 0.
(if) Addition of two polynomials p(x) and g(x) in F[x] is defined as
plx)+q(x)=cy+ecyx+ cox™ + egx® + -+, xF,
where ¢, = a, + b, for all i. Here + is commutative.
(iif)Multiplication of two polynomials p(x) and g(x) in F[x] is defined as
plx).q(x) = ¢y + cyx + e x% + cgx® + -+ c,.xF,
where c, = a,by +a,_,b, + a,_,b, + -+ ayb,.
Clearly (F[x], -) is a semi group with identity 1 = 1 + 0x + 0x* + -

15.2.3. Example: Consider the polynomials p(x)=1+x—x%g(x)=2+x*+x? in
F[x]. Calculate p(x) + g (x) and p(x).q(x)

Solution: Given p(x) =1 +x —x*,q(x) =2+ x* + x? in F[x].
Nowp(x)+g(x)=0x*—x*+x+1+2+0x+ x> +x*?
=0+ 3+ (—1+1Dx*+(1+0)x+ (1 +2)
=x®+x+3
Now compare p(x) and g(x) with a,+a,x+a,x*+a;x*+-+a, x™ and
by + byx + byx® + byx® + -+ + b, x" respectively.
So we have a,=1l,a,=1,a, =—1l,a; =a, = =0,
by =2, b, =0,b,=1,b, =1,and b, = b, = =+ = 0.
Now cy, = aghy =1-2=2
c,=abgtab,=1-2+1-0=2
€, = a,by +a;b, +ayb, = (-1)(2)+1-04+1-1=-24+1=-1
€3 = azby +a,by +ab, +ab; =0-24+(-1)-04+1-14+1-1=2

cy = azby + azhy + a.b, +a,by+ayb,=0-24+0-04+(-1)-14+1-1+ 1-
0=0

c; = agby + azb, + azb, +a,b; + a b, + agbg
=0-240-04+0-1+(-1)-1+1:0+0-0=-1
cg = aghy + agb, + azb, + azb; + a,by, +a,b; + ayb,
=0-240:0+0-14+0-1+(-1)-0+1-04+1-0=0
€, =cg = = 0.
ap(x)g(x) =(1+x—x?)(2+x" +x¥) =c, + cyx + c,x* + -
=2+2x—x*+2x¥—x°
We define 0(x) = 0, then 0(x) is the additive identity or zero element of F[x]
i, 0(x)+p(x)=04+0x+0x"+ -+ 0x"+ay+a,x+ax* +a;x*+--+a,x™
=a,+ax+ax*+azxd++a,x™
= 0(x) + p(x) = p(x) = p(x) + 0(x),¥ p(x) € F[X]
Consider a polynomial —p(x) = —a, + (—a,)x + (—a,)x* + (—az)x® + =+ (—a,,)x™ in
F[x].
Now p(x)+(—p(x))=0(x) = (—p(x)) + p(x). Then —p(x) is the additive inverse
polynomial of p(x) in F[x].
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Hence (F[x],+) is an abelian group.

By a routine verification, we can understand that the distributive laws hold good.
Therefore (F[x],+, ) is a ring. This ring is called the ring of polynomials in the
indeterminate x over the given field F.

15.2.4. Self Assessment Question: Consider the ring R = {a + bv—=5|a, b € Z}, two
polynomials fO)=x*+(1+V=5)x+2+3V/-5 and
g(x) =x*— (34 7V=5)x + (2 — 3v/—5) over R. Calculate (f + g)(x) and (fg)(x)

15.2.5. Definition: If a polynomial f(x) =a, + a;x + a,x*+a;x* + -+ a,x™ in F[x]
with a,, # 0 then we say that the degree of f(x) is n written as deg(f(x)), is n.
i.e., the degree of f(x) is the largest integer i for which the i ™™ coefficient of £(x) is not 0.

We do not define the degree of the zero polynomial.
A polynomial is said to be constant if its degree is zero.

15.2.6. Definition: A polynomial f(x) = a, + a;x + a,x* + azx® + -+ a,x™ is said to be
monic if a,, = 1.

15.2.7. Lemma: If f(x), g(x) are two non-zero elements of F[x] then
deg(f(x)g(x)) = deg (f(x)) + deg (g(x))

Proof: Let f(x), g (x) are two non-zero elements of F[x].
Then f(x) =ay + ayx +a,x* +azx® + -+ a,x™ for some a,€F, 1 <i<m, mis a
non-negative integer with a,, = 0 and g(x) = b, + byx + b,x* + byx® + -+ b x", for
some b, € F, 1 =i < n, nisanon-negative integer with b, # 0.
Therefore deg (f(x)) =m and deg (g(x)) = n.
By definition f(x).g(x) = ¢y + c;x + c,x* + egx® + -+ ¢, x",
where ¢, = a,by +a,_,b, +a,_,b, + -+ ayb,.
Now Cm4n — ﬂm+ubu + I::r':l:rl+:lz—l'il']'l + -t ambu +--+ H’Dbmﬂz
Since a,, = 0 and b, = 0, we have a, b, # 0.
= Cm4n #0
= deg (f(x)g(x)) = Cm+n — deg [:f[:x)) + deg(g(:’:)j
= deg (f(x)g(x)) = deg (f(x)) + deg(g(x))

15.2.8. Corollary: If f(x),g(x) are two non-zero elements in F[x] then
deg (f(x)) < deg (f(x)).deg (g(x))

Proof: By the above lemma, we have deg(f(x)g(x)) = deg (f(x)) + deg (g(x))

Thendeg (f(x)) < deg (f(x)) +deg (g(x)) = deg(f(x)).deg (g(x))
= deg (f(x)) < deg (f(x)).deg (g(x))

15.2.9. Corollary: F[x] is an integral domain.

Proof: Clearly F[x] is a commutative ring.

Claim: F[x] is an integral domain, i.e. it has no non zero divisors.

Consider the polynomials f(x) =a,+ a;x+a,x*+azx* +-+a,x™, for some
a, EF, 1=i=m, mis a  non-negative integer  with a, =0 and
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g(x) =by + byx+ b,x* + byx*+ -+ b x", for some b, €F,1<i<mn, nis a non-
negative integer with b, = 0.

= f(x)g(x) = 0 = F[x]has no non zero divisors.

= F[x] is an integral domain.

15.2.10. Definition: Let f(x), g (x) € F[x] with g(x) # 0. We say that g(x) divides f({x) if
there exists a(x) € F[x] such that f(x) =a(x)g(x). g(x) divides f(x) written as
g(x)/f(x).

15.2.11. Note: Let F be a field. By the above corollary, it follows that F[x] is an integral
domain. The field F* of quotients of F[x] is called the field of rational functions in x over F.

15.2.12. Lemma: (The division algorithm) Given two polynomials f(x) and g(x) # 0 in
F[x], then there exist polynomials t(x) and »(x) in F[x] such that f{x) = g(x)t(x) + r(x)
where r(x) = 0 or deg (r(x)) < deg (g(x)).

Proof: Let f(x)=a,+ax+a,x*+a;x*+-+a, x™ with a,6#0 and
g(x) =by + byx+ b,x* + byx?+ -+ b x™ with b, 0. Then deg (f(x))=m and

deg (9(x)) = n.
If m < n or f(x) = 0, there is nothing to prove.

Suppose m = n.

Let £,(x) = £ () = (=) x""g ()

Then

filx) =ay +a;x +a,x* +azx®+ -+ a,x™ — {‘:ﬁ)x’”'”(bu +byx + byx* + byx® +
4 b x™)

~deg filx)=m—1
Then by induction on the degree of f(x), we can assume that
fi(x) = t,(x)g(x) + r(x), where r(x) = 0 or deg (r(x)) < deg (g(x))
= F() = (32)x""9() = £,(Dg() +r(x)

= £ = (52) 2™ g(x) + £,(x)g () + r(x)

mn

= f(x) = ((—)x + rltxj)g(xj +7(x)
Here »(x) = 0 or deg (r(x)) < deg (g(x))
15.2.13. Theorem: F[x] is a Euclidean ring

Proof: By the corollary 15.2.9, we have that F[x] is an integral domain.
Let f(x) € F[x] with f{(x) # 0
Take deg (f(x)) = d(f(x))
(i) Clearly, d(f(x)) = 0, for all non-zero polynomial f(x) in F[x]
(i) d(f(x)) < d(f(x)g(x)), for all non-zero polynomial g(x) in F[x]
(i)  Let f(x),g(x) € F[x]with g(x) = 0
Then by the division algorithm, there exists two polynomials t(x) and +(x) in F[x] such that
fx) = g(x)t(x) + r(x), where r(x) = 0 or deg (r(x)) < deg (g(x)).
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=~ F[x] is an Euclidean ring.
15.2.14. Lemma: F[x] is a principal ideal ring.

Proof: We have that every Euclidean ring is a principal ideal ring.
Hence F[x] is a principal ideal ring.

15.2.15. Definition: Consider any two polynomials f{x) and g(x) in F[x] not both zero. We
say that the non zero polynomial d(x) € F[x] is the greatest common divisor of f{x) and
g(x) if

(i) d(x)/f(x)and d(x)/g(x)

(i) If h(x)/f(x) and h(x)/g(x) then h(x)/d(x)

15.2.16. Lemma: Given two polynomials f(x),g(x) in F[x] they have a greatest common
divisor d (x) which can be realized as d(x) = A(x) f(x) + u(x)g(x)

Proof: We have F[x] is an Euclidean ring.

Let R be an Euclidean ring. Then any two elements a, b € R have a greatest common divisor
d. Moreover the ged is of the form d = Aa + ub for some A, u € R.

Hence the ged of f(x),g(x) is of the form d(x) = A(x)f(x) + p(x)g(x), for some
A(x),p(x) € F[x].

15.3. IRREDUCIBLE POLYNOMIALS:

15.3.1. Definition: A polynomial p(x) in F[x] is said to be irreducible over F if whenever
p(x) = a(x)b(x) with a(x), b(x) € F[x], then one of a(x) or b(x) has degree 0. (i.e. it is
constant).

15.3.2. Example: Consider x* 4+ 1 = (x +i)(x— i) (Here i* = —1)
Thenx=aorx=bhisarootof x?+ 1
a*4+1=00rb*+1=0=a*=—-10rb*=-1
This can not be true for any real numbers a, b € R.
~ x>+ 1 is irreducible over R.
In the set C of complex numbers, consider x= + 1 = (x + i) (x — i).
Thendeg(x+i)=1=*0anddeg(x—i) =1+ 0

Therefore x* + 1 is not an irreducible polynomial over C.

15.3.3. Lemma: Any polynomial in F[x] can be written in a unique manner as a product of
irreducible polynomials in F[x].

Proof: Let f(x) € F[x]
Suppose f(x) is a unit polynomial.
Then f(x) is an irreducible polynomial.
Hence f(x) can be written in a unique manner as a product of irreducible polynomials in
F[x].
Suppose f(x) is not unit polynomial.
By unique factorization theorem, f(x) can be written as a product of prime elements in a
unique way.

Since every prime element is an irreducible element. We have that f(x) can be
written as product of irreducible elements in a unique manner.
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15.3.4. Lemma: The ideal A = (p(x)) in F[x] is a maximal ideal if and only if p(x) is
irreducible over F.

Proof: Assume that 4 = (p(x)) is a maximal ideal of F[x] .

Now we prove that p(x) is irreducible over F

Suppose that p(x) is not irreducible over F.

i.e.p(x) = al(x)b(x), where a(x), b(x) € F[x] and deg (a(x)) = 0and deg (b(x)) = 0.
Take B = (b(x))

Clearly, we have that (p(x)) € (b(x)) € F[x]

If [p[x]) = (b(x]), then b(x) € [:p[x])

= b(x) = p(x)g(x), for some g(x) € F[x]

= a(x).b(x) = a(x).p(x)g(x)

= alx).g(x) = 1, which is a contradiction

= (p(x)) = (b(x))

Clearly, every constant polynomial of F[x] is not in (b(x))

=~ (p(x)) = (b(x)) € F[x], which is a contradiction

=~ p(x) is irreducible polynomial over F.

Conversely, assume that p(x) is irreducible polynomial over F

We prove that (p(x)) = A is maximal.

Let (u(x)) be any ideal of F[x] with (p(x)) € (u(x))

Then p(x) € (u(x))

= p(x) = u(x)u'(x), for some u'(x) € F[x]

Since p(x) is irreducible, we get that deg (u(x)) = 0 or deg (u'(x)) =10
Suppose deg (u(x)) = 0.

i.e. u(x) is a constant polynomial of F[x].

Then 1 € (u(x))

= q(x) 1 € (u(x)), ¥ q(x) € F[x] (Since u(x) is an identity of F[x] )

=q(x) €(u(x)), Vq(x)€ F[x]
Hence (u(x)) = F[x]
Therefore (p(x)) is maximal.
Suppose deg(u'(x)) = 0.
Now p(x) = ulx)u'(x)
pl(x) = u(x)a, where take u'(x) = a
= p(x) = a.u(x)

=a 'p(x) = u(x)

= u(x) € (p(x))

= (u(x)) € (p(x))

= (u(x)) = (p(x))

Hence (p(x)) is a maximal ideal of F[x].

15.3.5. Self Assessment Question: (i) If p(x) is an irreducible element in F[x], then show
that p(x) is either a unit or a prime element in the Euclidean domain F[x].
(). Observe that every prime element is an irreducible element.
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15.4. MODEL EXAMINATION QUESTIONS:

15.4.1. Given two polynomials f({x) and g(x) # 0 in F[x] where F is a field. Then prove
that there exist two polynomials ¢(x) and »(x) in F[x] such that f{x) = t{x)g(x) + r(x),
where r(x) = 00rdeg(r(x)) < deg(g(x)).

15.4.2. Suppose that F is a field and p(x) € F[x]. Then the ideal generated by p(x), that is,
(p(x)) In F[x] is a maximal ideal of F[x] < p(x) is irreducible in F[x].

15.5 SUMMARY:

The abstract algebraic concepts and operations like polynomials, equality of
polynomials, multiplication, degree, irreducibility and the ring of polynomials are introduced.
We proved that F[x], the ring of polynomials over a field F, is an integral domain. We
deduced the division algorithm. F[x] is a Euclidean ring. F[x] is also a principal ideal
domain ring. The ideal 4 = (p(x)) in F[x] is a maximal ideal if and only if p(x) is
irreducible over F.

15.6 TECHNICAL TERMS:

Polynomial: Let F be a field, x an intermediate. Write
F[x]= {a0 +a,x+---+a x"|n isapositiveinteger,a e F,1<i<n } Each element of F[x] is
called polynomial with coefficients from F.

Constant polynomial: A polynomial with zero degree is called a constant polynomial.

Division Algorithm: Given two polynomials f(x) and g(x) #= 0 in F[x], there exist two
polynomials ¢(x) and r(x) in F[x] such that f(x) = t(x)g(x)+ r(x), where »(x) = 0or
deg(r(x)) < deg (g(x)).

Irreducible polynomial: A polynomial p(x) F[x] is irreducible if p(x) is of positive
degree and given any polynomial f(x) in F[x], then either p(x) \ f(x)or p(x) is relatively
prime to f(x).

15.7 ANSWERS TO SELF ASSESSMENT QUESTIONS:

15.2.4.
) (f+g)x)={x*+(1+V-5)x+2+3V-5}+{x*-(3+7V-5)x+(2—3V-5)]
=x+x*—(2+6V/-5)x+4
(i) (Fg) () = {x* + (1 +V=5)x + 2+ 3V—5}x* - (3 + 7V—5 Jx + (2 - 3v/-5)}
=x%+ (1+V=5)x* — (1 +4V—5)x® + (34 — 13V—-5)x? + (116 — 24V —5)x
+ 49.

15.3.5. (i) Suppose that p(x) is an irreducible element in F[x] which is not a unit. We have to
show that p(x) is a prime element in F[x]. For this, suppose that p(x) = a(x)b(x). Since
p(x) is irreducible, we have that either deg(a(x)) = 0 or deg(b(x)) = 0. This implies
that either a(x) is constant or b(x) is constant, and so either a(x) is a unit or b(x) is unit.
This shows that every irreducible element in F[x] is either a unit or a prime element.
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(if) From the definitions of prime element and irreducible element, it is clear that every prime
element is an irreducible element.

15.8 SUGGESTED READINGS:

1) L.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.

-Dr. Noorbhasha Rafi



LESSON -16
POLYNOMIALS OVER THE RATIONAL FIELD

OBJECTIVES:
The objectives of this lesson are to

% Define primitive polynomial, content of a polynomial, integer monic polynomial
++ State and prove Gauss lemma.

STRUCTURE:

16.1. Introduction

16.2. Polynomials over the Rational Field
16.3. Model examination questions

16.4 Summary

16.5 Technical Terms

16.6 Answers to Self Assessment Questions
16.7 Suggested Readings

16.1. INTRODUCTION:

We define the concepts: primitive polynomial, content of a polynomial and integer
monic polynomial. We state and prove Gauss lemma.

16.2. POLYNOMIALS OVER THE RATIONAL FIELD

16.2.1. Definition: The polynomial f(x) = a, + a,x+... +a,x", where ay a,,...,a, are
integers is said to be primitive if the greatest common divisor of a,, a,,...,a, is 1.

16.2.2. Lemma: If f(x) and g(x)are primitive polynomials then f(x)g(x) is a primitive
polynomial.

Proof: Consider the polynomials f(x) = a; + a,x+... +a,x™ and g(x) = byx+...+b,x".
Suppose f(x) and g(x)are primitive polynomials.

Then gcd{ay,, a,,...,a,}=1 and gcd{b,, by,..., b, }=1.

Now f(X)g(X)=C,+CX+C,X* +...+C X", where ¢, = a by + a,_, b, +... +ayb,

Now we prove that gcd{c,,c,,...,c, }=1

Suppose ged{c,,C,, ... G, } # 1. Then choose a prime number p >1 such that gcd{c,,c,,...,C } =
p. Thenp/e;, for 0<i<k.

Suppose p/a;, for 0<i<n, we get gcd{a,,a,,...,a, }=1, which is a contradiction.
~.pXa;,forsome j,0< j<n.

By similar argument, we get p Xb,, for somek,0<k<m

= pXab,.

Now Cj =a;.bp +a,, b +a;,, .0, +..+ab +...+ab,
Since PXa;By, we get P X €1, which is a contradiction to 2/€: for 0 < i < k.
~ ged{cg €y, 0.} =1

Hence f (X)g(x) is a primitive polynomial.



\Center for Distance Education 16.2 Acharya Nagarjuna University\

16.2.3. Definition: The content of the polynomial (x) = a, + a;x +--- +a,x", where the
a;'s are integers, is the greatest common divisor of the integers a,, a,,...,a

PRt

16.2.4. NOTE: 1. Any polynomial p(x) with integer coefficients can be written as
p(x) = dq(x), where d is the content of p(x) and g(x) is a primitive polynomial.
2. The content of every primitive polynomial is 1.

16.2.5. Theorem (Gauss Lemma): If the primitive polynomial f{x) can be factored as the
product of two polynomials having rational coefficients, it can be factored as the product of
two polynomials having integer coefficients.

Proof: Assume that the primitive polynomial f{x) can be factored as the product of two
polynomials u(x) and v(x) having rational coefficients.
l.e f(x)=u(x)v(x), where u(x) and v(x) have rational coefficients.

The coefficients of u(x) and »(x) can be written as u(x) = %/I(x) and v(x) = %,u(x) , Where
2
A(x) and u(x) are primitive polynomials with integer coefficients.

Now f (x) = %zm%u(x) = %MX)#(X)

Take a=aa, andb=Dbb,. So f(x) :%i(x)y(x) = bf (x) =aA(x) u(x)

Since f(x) is primitive, the content of f(x) is 1 and hence the content of bf(x) is b.
By known result, A(x)(x) is primitive.

= the content of A(x)x(x) is 1 and the content of a A(x)u(X) is a.

Therefore a = band hence f(x)=A(X)u(x), where A(x)and x(Xx) having integer
coefficients.

16.2.6. Definition: A polynomial is said to be integer monic if all its coefficients are integers
and it’s highest is 1.

16.2.7. Note: Every integer monic polynomial is primitive but converse is not true.

16.2.8. Corollary: If an integer monic polynomial factors as the product of two non-constant
polynomials having rational coefficients then it factors as the product of two integer monic
polynomials.

Proof: By the above note, the Gauss lemma is valid to this corollary.

16.2.9. Self assessment Question: Prove that the polynomial x* — 9 is an irreducible
polynomial over the field Z;, = {0,1, ..., 30} of the integers modulo 31.

16.3. MODEL EXAMINATION QUESTIONS:

16.3.1. Define the term ‘primitive polynomial’. If f{x) and g(x) are primitive polynomials
then show that f(x)g(x) is also a primitive polynomial.

16.3.2. State and prove Gauss Lemma

16.3.3. Prove that x* + x + 1 is an irreducible polynomial over the field of integers modulo
2.

16.3.4. Prove that the polynomial x* — 9 is an irreducible polynomial over the field Z.,of
integers modulo 31.
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16.4 SUMMARY:

We introduced some concepts like primitive polynomial, content of a polynomial,
integer monic polynomial. We proved that the product of two primitive polynomials is also a
primitive. Gauss lemma was proved.

16.5 TECHNICAL TERMS:

Primitive polynomial: A polynomial f(x)=a,+ a,x+a,x*+-++a,x" where
ag, a,, ..., a, are integers, is said to be primitive if g.c.d{a,, a,, ...,a,} = 1.

Content: If f(x) =a, +a,x+a,x*+ - +a,x™,where a,, a,, .. a, are integers, then
the g.c.d of a,, a,, ..., a,is called the content of f(x).

Monic polynomial: A polynomial f(x) =a, + a,x+a,x*+-++a,x™ is said to be
monic if a,, = 1.

Integer Monic: A polynomial f(x) =a, + a,x +a,x*+ -+ a,x™ is said to be integer
monic if ay, a,, ...,a,, areintegersand a, = 1.

16.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:

16.2.9. In a contrary way, suppose that the polynomial x*— 9 is not an irreducible
polynomial over the field z,, ={0,1,2,..,30}. Then x*—9=f(x)g(x) for some
polynomials f(x) and g(x) over Z;,. Now either f{x) or g(x) is of degree 1. Suppose
deg(f(x)) = 1. Since f(x) = x — a is a factor of x* — 9, the polynomial x* — 9 has root in
Z,,. For some 0 < x < 31, we have x* — 9 =0 = x® = 9(mod 31) for some 0 < x < 31.
Since 31 is a prime number, the number of integers lies between 0 and 31, which are
relatively prime to 31 is 30. So ¢(31) = 30 (Euler’s function ¢ is used here). [Recall the
statement of the Euler’s theorem: If @ is relatively prime to n, then a®™ = 1(mod n) where
¢(n) is the number of non-negative integers < = that are relatively prime to n]. Now 31 is a
prime  number  and 0<x=<31 =x is  relatively prime to 31
= x*03Y = 1(mod 31) = x*° = 1(mod 31). Already we have
x? = 9(mod 31) = x%° = 9'%(mod 31). By transitive property  we get
91% =1 (mod 31) = 3°° = 1(mod 31). Since 3 is relatively prime to 31 we have
3% = 1(mod 31) (by Euler theorem). Now
3% =1, (mod 31)3* = 1 (mod 31) = 3*° = 3°(mod 31) (by transitive)
=31\3%%(3"% —1) = 313" or 31\ (3% - 1). Since 31 cannot divide 3°* (otherwise
31 \ 3 since 31 is prime), it follows that 31 divides (3'° —1) = 58049 — 1 = 58048, a
contradiction (since 58048 = (1904)(31) + 24). This shows that x? — 9 is irreducible over
Zay

16.7 SUGGESTED READINGS:

1) I.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra™, Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.

-Dr. Noorbhasha Rafi



LESSON - 17
POLYNOMIAL RINGS OVER COMMUTATIVE

RINGS

OBJECTIVES:
The objectives of the lesson are to

X/
X4

L)

state and prove Eisenstein criterion

apply the Eisenstein criterion to find the irreducibility of a given polynomial.

define the concepts like: polynomial ring R[x,,x,,..x,] over a given ring R in n-
variables, field of rational functions, unique factorization domain.

find the influence of the structure of R on that of R[x,,x,, ... x,,]

apply the Gauss lemma to the ring R [x], where R is the unique factorization domain.
prove some basic theorems and lemmas

STRUCTURE:

17.1 Introduction

17.2 The Eisenstein criterion principle

17.3 Polynomial rings over commutative rings
17.4 Model examination questions

17.5 Summary

17.6 Technical terms

17.7 Answers to the self-assessment questions
17.8 Suggested Readings

17.1. INTRODUCTION:

We continue the study of polynomials. We state and prove Eisenstein criterion. We
use the Eisenstein criterion in verifying whether a given polynomial is irreducible. We define
R[x], the polynomial ring in x over R. R[x,,x,, ..., x, ] the ring of polynomials in n variables
Xy,%5, ..., X, OVer R. We study the influence of the structure of R on that of B[x,,x,, ..., x,].
We define unique factorization domain. If R is an unique factorization domain then so is
R[x]. Then we are able to extend this to R[x,,x,, ...,x,] by using mathematical induction.
Also we prove that if F is a field, then F[x,,x,, ...,x,] is a unique factorization domain.

X/
°

X/
X4

L)

X/
X4

L)

X/ X/
L XA X

17.2. THE EISENSTEIN CRITERIAN PRINCIPLE

17.2.1. Theorem (The Eisenstein Criterion): Let f(x)=a,+aXx+...+a,X" be a polynomial
with  integer  coefficients.  Suppose that for some prime number p,
pXa, pl/a,pl/a,..pla,p°>Xa,. Then f(x) is irreducible over the rationals.

Proof: Suppose there is a prime number p such that pXa ,p/a,p/a,,..,p/a,and p*> X a,.
Without loss of generality, we can assume that f(x) is a primitive polynomial.

By Gauss Lemma, f(x) can be factored as the product of two polynomials having rational
coefficients, it can be factored as the product of two polynomials having integer coefficients.
We prove that f(x) is irreducible over the rationals.

If f(x) is reducible, then f(x) = g(x)h(x), where g(x) =b, +bx+...+b.x",
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h(x)=c, +Ccx+...+c,x’and deg g(x) = 0and deg h(x) > 0, where b’s and c’s are
integers.

Here a, =hyc,

Since p/a,, weget p/byc,.

Since p is prime, we get either p/b,or p/c, or both.
If p/b, and p/c,, then p* /b,

= p*/a,, which is a contradiction to p® X a,
=either pXb,or pXc,

Suppose p/byand pXc,.

Since f(x) is primitive, we get that g(x) is primitive.
= pXhb,, forsomek,1<k<r

We have that a, =b,c,+b, ,c +...+b,C,.

Since pXc, and pXb,, we get pXbc,

= p X a,, which is a contradiction to p/a,.

. T(x) is irreducible over rationals.

Suppose p/c, and pXb,.

Since f(x) is primitive, we get h(x) is primitive.

= pXc,, forsomek,1<k<s

We have a, =b.c,+b, ,c, +...+DbC, .

Since pXc, and pXhb,, we get pXh,.

= p X a,, which is a contradiction to p/a,.

. T(x) is irreducible over rationals.

17.2.2. Problem: If p is a prime number, then prove that the polynomial x™ — p is
irreducible over the field of rational numbers.

Solution: Suppose x™ — p = a,+ a,x+ -+ a,x",wherea, =0 for1 <i<(n—1)and
a, = 1,a, = p. Now p divides a, for 0 < i <n — 1;p do not divide a,; and p* does not
divide a,. By applying the Theorem 17.2.1(Eisenstein Criterion), we can conclude that the
polynomial x™ — p is irreducible over the field of rational numbers.

17.2.3. Problem: Prove that the polynomial 1 + x + -=-+ x®Y \where p is a prime number,
is irreducible over the field of rationals.

Solution: Here we consider the polynomial 1+ (x + 1) + (x + 1)* + =+ (x + 1)~* and
use the Eisenstein Criterion.

We know that

1+ (x+D)+(E+1*+ -+ (x+1)P ' =1+(x+ D+ (E*+2x+ 1)+ -+

(x+ 1P t=p+[1+2+-+(@-Dx+[1+3++ (p—2)x?+-+xFV =

p+ [w]x + - _|_x|:;:—1} =a,+ax+ -+ ap_ix(p—ljl

(p—1)
Where a; = p,a, = =—, ..,a,_, = 1.
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Clearly, p|a,, p|a,,. and p does not divide a,_,. Also p* does not divide a,. Hence by
Theorem 17.2.1(Eisenstein Criterion), we conclude that
14+ (x+1)+(x+1)%+ -+ (x+1)7* is irreducible over the field of rational numbers.
Hence 1+ x+ -+ x"~Y where p is a prime number, is irreducible over the field of
rationals.

17.3. POLYNOMIAL RINGS OVER COMMUTATIVE RINGS:

17.3.1. Definition: Let R be a commutative ring with unit element 1.

(i) The polynomial ring in x over R is denoted by R[x] and it is defined as

R[x]={ay+ax+-+a,x"fa, ER0<i<m}
The equality, addition (+), and multiplication (.) are defined same as in
polynomials over fields. Hence it is easy to verify that (R[x],+,.) is a
commutative ring with unit element.

(if) The ring of polynomials in the n variables x,,x,,..,x,, over R is denoted by
R[xy,%5, o, %] and defined as follows
R, = R[x,].R, = Ry[x,],R; = R,[x;3).....,.R,, = R,_,[x,] R, is called the ring of
polynomials in x,,x,,..,x, over R. Its elements are of the form

n
Za:.__iwinxi'-x;‘ ..x™ where equality and addition are defined coefficient wise
and where multiplication is defined by use of the distributive law and the rule of
exponents
+iy iatia

L in Jo dz .i".'l)— L P S intin
[.‘1’1 Xy Xy )(.‘1’1 AT )T Xy Xy x

17.3.2. Lemma : (i) If R is a commutative ring with identity, then so is R [x]
(ii) If R is an integral domain, then so is R[x]

Proof: (i) We have that R[x] is a ring.

Clearly 1 = 0+ 0x + ---+ 0x™ is the identity element of R [x].

Let f(x), g(x) € R[x].

Then f(x) =ay+ax+-+a,x", wherea, ER0<i<n
glx) =by +byx+ -+ b, x™ whereb, ER,0<j<=m

We prove that f(x)g(x) = g(x)f(x)

flx)g(x) = (ag+ ayx+-+a,x™)(by+ bjx+ -+ b, x™)

=gyt ex+ e, x™ ", wherec, =X _ya.b,_,

Now

glx)f(x)= (by+ byx+ -+ b, x™)(a, +a;x+ - +a,x")

=d,+dx+-+d, . x™" whered, =X:_,b.a._,

Since R is commutative, we have that

d,= ) ba,_.= ) ab,_.=c foralll<i<m+n
= f(x)g(x) = g(x)f (x) for all f(x),g(x) € R[x],

Hence R[x] is a commutative ring with identity.
(ii) Let f(x),g(x) € R[x]with f(x) = 0and g(x) = 0
Then f(x) =ay + a,x+-+a,x™, wherea,, =0
g(x) =Dby + byx+ -+ b,x", where b, #0
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Now
flx)g(x)=(ag+ax+-+a,x™)(by +byx+-+b,x™)
=cy+eox+ o+, x™ ", wherec, = Xf_a,_.b,
Now Cm4n — I:-"::IJ'1+:lz'il']'I]l + -+ ﬂmbn +--+ ﬂubm+u
Since a,, # 0 and b, # 0 and R is an integral domain, we get that @, b, + 0 and
hence c,,,, #0
=~ flx)g(x) 0
Thus R[x] is an integral domain.

17.3.3. Corollary: (i) If R is a commutative ring with identity, then so is R [x,, x5, ..., x,]
(i) If R is an integral domain, then so is R[x,x,, ..., x,,]

Proof: (i) Let R be a commutative ring with identity
Now we prove this by induction on n.
Suppose n = 1, then by Lemma 17.3.2, we have that R[x,] is a commutative ring
with identity 1.
Suppose the result is true for n — 1
That means R,_, = R[x,x,, ..., x,_,] IS a commutative ring with identity 1.
Then by Lemma 17.3.2.(i), R,,_,is a commutative ring with identity 1, we get that
R, =R,_,[x,](ie. R, = R[x,,x,,..,x,]) IS a commutative ring with identity 1.
(ii) Let R be an integral domain
We prove this also by induction on n.
Suppose n = 1, then by Lemma 17.3.2.(ii), we have that R[x,] is an integral domain.
Assume the result is true for n — 1
That means R,_, = R[x,,x,, ..., x,_,] is an integral domain
That implies again by Lemma 17.3.2.(ii), we getthat R, = R, [x,,] (i.e.
R, = R[x,,x,, .., x,]) is an integral domain.
In particular, when F is a field F[x,,x,, ..., x,,] must be an integral domain. As such
we can construct its field of quotients; we call this the field of rational functions in
x,,%, ..., %, Over the field F and denote it by F[x,,x,, ..., x,].

17.3.4. Definition: Let R be an integral domain with unit element 1.
() Anelement x € R is said to be a unit in R if xy = 1, for some v € R.

(i) Two elements a, b in R are said to be associates if a = ub, where u is a unit element
inR.

(iii) An element a € R which is not a unit element of R, will be called irreducible (or a
prime element) if , when ever a = be with b, ¢ both in R, then one of b or ¢ must
be a unit element in R.

17.3.5. Definition: An integral domain R with unit element is said to be a unique
factorization domain if
() Any non-zero element in R is either a unit or can be written as the product of a finite
number of irreducible elements of R.

(i) The decomposition in part (i) is unique up to the order and associates of the
irreducible elements.
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ie. If a =p,p, ..p, = 4,49, ...q,,, Where p,'s and q;'s are irreducible elements
(1=i<nand 1=<j=m),then m = n and for each i, there corresponds j such
that p; and q; are associates.

17.3.6. Lemma : If R is a unique factorization domain and if a, b are in R, then a and b have
a greatest common divisor (a,b) in R. More over, if aand b are relatively prime
(i.e.(a, b) = 1), whenever a/bc then a/c.

Proof: Let R is a unique factorization domain and if a, b are in R
Then we can write a = pyp, ...p,, b = q,9, ...q,, where p,'s and q,'s are irreducible
elementsfor 1< i<nand 1< j<m.
Without loss of generality we can assume that n < m.
Now we prove this result by using induction on '»’
Suppose n = 1, thena = p,
If there is j (1 < j = m) such that p, is an associate of g; then (a, b) = p,.
If there is no j (1 < j = m) such that p, is an associate of g; then (a, b) = 1.
Hence the gcd of a and b exists forn = 1
Assume the result is true forn =k — 1
Now we prove this result is true for n = k
Suppose a = p,p; -.- Py
Take a’ = pp; ... p_y- ThENa = p,p, ..p; = a'py.
By the induction hypothesis, the gcd of a’ and b exists.
Let (a',b) =d
If there is j (1 < j = m) such that p, is an associate of g ; then (a, b) = dp,.
Hence gcd exists for a and b.
Leta,b,c € R with (a,b) = 1 and a/bc.
Since R is a unique factorization domain, we can write
a=pp; Py
b=4q,q;..9,
¢ =nr, .1, where p;s, q;s and rys are irreducible elements for 1 < i < n,
l1<j<ml<k<s
Since a/bc, there exists x € R such that be = ax.
= (9192 - G (173 ) = (PyP7 - Py )x
Since R is a unique factorization domain and p; (1 < i =< n), we have that p, is associate of
either g; orr,, forsome 1 < j=morl <k <s.
Suppose that p; is associate of g, then p;/a and p; /b
Since (a, b) = 1, we get that p, = 1, which is a contradiction to irreducible element p..
= p; is not an associate of g ;, forall 1 < j < m.
Hence p, is an associate of Py forsome 1 < k; <s

LPiP2 Po

P Ve T
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mn
=afc

17.3.7. Corollary: If a € R is an irreducible element and a/be then a/b or a/c.
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Proof: Let a be an irreducible element of R and a/bc.

We prove that a/b or a/c

Suppose a does not divides b

Since a is irreducible and a does not divides b, we get that (a, b) = 1
By the above result we get that a/c.

17.3.8. Definition: Let R be a unique factorization domain.

(i) The content of given polynomial f(x) = a, + a;x + -+ a,,x™ in R[x] is defined to
be the gcd of ay, a,, ..., a,,. We denote the content of f(x) by ¢(f).
(i) Given polynomial f(x) = ay + a;x + - 4+ a,, x™ in R[x] is said to be primitive if

c(f)=1

17.3.9. Self Assessment Question: Let f(x) € R[x]. Then there exist a primitive polynomial
fi(x) € R[x] such that f(x) = af,(x), where a = ¢(f).

17.3.10. Lemma : If R is a unique factorization domain, then the product of two primitive
polynomials in R[x] is again a primitive polynomial in R [x].

Proof: By Lemma 16.2.2, we have the proof.

17.3.11. Corollary: If R is a unique factorization domain and if f(x), g (x) are in R[x], then
c(fg) = c(f)elg)

Proof: Let f{x),g(x) be in R[x]
We can write f(x) = af;(x) and g(x) = bg,(x), where a = ¢(f) and b = ¢(g), f,(x) and
g,(x) are primitive polynomials.
By Lemma 17.3.10, f,(x) g, (x) is a primitive polynomial. = c[:fl (x)gl(x)) =1
Now ¢(f(x)g(x)) = c(af,(x)bg,(x))
= c(ab fi(x) g.(x))
= ab c(f,(x)g,(x))
=ab.1
=ab
= e(f(x))e(g(x)).
17.3.12. Self Assessment Question: If R is a unique factorization domain and if

filx) eR[x].1 =i <k, then c(f,fs - fir) = c(f)e(fy) - c(f)

17.3.13. Notation: Hence forth, we consider R to be a unique factorization domain. Since it
is an integral domain, we have that R can be embedded in a field F (called the field of
quotients of R)
(N If we take a polynomial f(x) € R[x] then the coefficients of f(x) are from R.
Since R € F, the coefficients of f{x) are from F.
Therefore f(x) € F[x]. Hence R[x] € F[x]
(i)  R[x],F[x]arerings and R[x] € F[x]
~ R[x] is asubring of F[x]
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17.3.14. Self Assessment Question: If f(x) € F[x] then prove that f(x) = ifﬂ (x), where
f(x) € R[x] and a ER.

17.3.15. Lemma : If f(x) in R[x] is both primitive and irreducible as an element of R [x],
then it is irreducible as an element of F[x]. Conversely, if the primitive element f(x) in R[x]
is irreducible as an element of F[x], it is also irreducible as an element of R [x].

Proof: Let f(x) be both primitive and irreducible polynomial of R[x].
Now we prove that £(x) is irreducible as an element of F[x]
Suppose f(x) is not irreducible over F[x].
Then f(x) = g(x)h(x), where g(x),h(x) are in F[x] and are of positive degree.
Now g(x) = igu (x)and h(x) = ihﬂ[x], where g,(x), hy(x) € R[x]and a,b € R
Also g,(x) = ag,(x), hy(x) = fh,(x), where & =c(g,), £ = c(h,) and
g,(x), hy(x) are primitive in R [x]
Now f(x) = g(x)h(x) = = go(x) £ o (x)
= ﬁfxﬂl[f‘fjﬁhi(?‘fj
= %Hi[fx]hl(ﬁ’)
= abf(x) = aBg, (x)h, (x)
Since g, (x),h,(x) are primitive, we have that g, (x)h,(x) is primitive and hence the content
of the right hand side is a3.
Since f(x) is primitive, the content of the left hand side is ab.
~ab=af
Hence f(x) = g, (x)h,(x), which is a contradiction to f(x) is irreducible in R[x]
-~ f(x)is irreducible over F[x].
Conversely, assume that a primitive polynomial f(x) in R[x] is irreducible over F[x].
We prove that f(x) is irreducible over R [x].
Suppose f(x) is not irreducible over R [x].
Then f(x) = f,(x) f>(x), where f,(x), f;(x) are in R[x] and are of positive degree.
Since R[x] is a subring of F[x] we get that f{x) is not irreducible over F[x], which is

a contradiction.
= f(x) is irreducible over R [x].

17.3.16. Lemma : If R is a unique factorization domain and if p(x) is a primitive polynomial
in R[x], then it can be factored in a unique way as the product of irreducible elements in
R[x].

Proof: Let R be a unique factorization domain and let p(x) be a primitive polynomial in
R[x].
Then p(x) € F[x]. By lemma 15.3.3, we can write p(x) = p, (x)p,(x)...p,(x), where
py (x), p,(x), ..., p. (x) are irreducible polynomials in F[x].
Since p;(x) € F[x] for 1 = i < k, we get that p;(x) = ffi[ﬂ’ where a; € R, f,(x) € R[x],
fori1<i<k.

Moreover, f;(x) = ¢(f;)q;(x), where g,(x) is primitive polynomial in R[x], for1 < i < k

Now p(x) = py (x)p, () ... P (x)
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= TA@ ZAE - fll)

= (@) - c(f)a:(x) -

1

1

—c(fi)a )
o c(f)e(f) e (F) (@1 () (%) g (x))

= (a,05 @ )P(x) = c(£)e(fs) - c(£)(@, (D92 (3) - 0, ()
By the primitivity of p(x) and of g, (x)g.,(x) ... g, (x), we have the content of left hand side
as a, a, ...a, and the content of right hand side as c(f,)e(f;) ...c(f,) are equal.
i.e.aa;..a, = c(fi)e(fy) .. c(fi)
Hence p(x) = q,(x)g,(x) ... g, (x), where g, (x) is irreducible polynomial in R [x].

Uniqueness: Suppose p(x) = r, (x)r,(x) ... 1, (x), where each r;(x) is irreducible in R[x],
fori=j<m
Since p(x) is primitive, each r;(x) is primitive in R[x]. Since by Lemma 15.3.3, the
uniqueness in F[x], we get g;(x) and r;(x) are equal (up to associates) in some order.

Hence p(x) has a unique factorization as a product of irreducible in R [x].

17.3.17. Self Assessment Question: Suppose that R is an unique factorization domain. If
a € R is an irreducible element of R, then the constant polynomial defined by a(x) = a is
irreducible in R [x].

17.3.18. Theorem: If R is a unique factorization domain then so is R [x].

Proof: Let R is a unique factorization domain.
We prove that R[x] is a unique factorization domain.
Let f(x) € R[x]. We can write f(x) inaunique way as f(x) = cf,(x), where c = ¢(f) and
f,(x) is a primitive polynomial in R[x].

By the above lemma, we can decompose f;(x) in a unique way as
fi(x) = p, (x)p,(x) ... p. (x), where each p, (x) is irreducible over R[x], for 1 < i < k.
Suppose ¢ = ay(x)a,(x) ...a,,(x) Then
0=deg(c) = deg[al} [x]) + deg(al[x)) + -+ deg[am [x])
= deg[ai(xj) =0,foro<i=m
= each a,(x) is a constant polynomial, for 0 < i < m.
Since ¢ € R and R is a unique factorization domain. We get that ¢ has a unique factorization.
= f(x)has a unique factorization in R[x].

~ R[x] is a unique factorization domain.

17.3.19. Self Assessment Question: If R is a unique factorization domain then so is

R,y o, X,

17.3.20. Self Assessment Question: If F is a field then F[x,,x,, ..., x,] is a unique
factorization domain.

17.4. MODEL EXAMINATION QUESTIONS:

17.4.1. State and prove Eisenstein criterion principle.

17.4.2. Define the concepts ‘primitive polynomial’ and ‘irreducible polynomial’.
If f(x) € R[x] be a primitive polynomial, then prove that f(x) is irreducible in
R[x] = f(x)isirreducible in F[x].
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17.5 SUMMARY:

We stated and proved the Eisenstein criterion. We used the Eisenstein criterion to find out
whether a given polynomial is irreducible. Some abstract algebra concepts like the ring of
polynomials in one indeterminate x over a given ring R, the ring of polynomials in the n
variables over R, field of rational functions, associates prime element, unique factorization
domain, content, primitive are introduced. We proved that if R is an integral domain
(respectively, commutative ring with unity 1). Then so is R[x], and we also extended this to
R[x,,x,,..,x,]. If R is a unique factorization domain, then so is R[x], and we also extended
thisto R[x,,x,,..x,]. If Fis a field, then and we also extended this to F[x, x,,..x,]isa
unique factorization domain.

17.6 TECHNICAL TERMS:

Field of rational functions: If F is a filed, then F[x,,x,, ..., x,] is an integral domain. Let
F[x,,x,,..x,] be the field of quotients of F[x , x,,..,x,]. Then F[x , x,,..,x,] is called
the field of rational functions in x,,x,, ..., x,, Over F.

Unit element: Let R be an integral domain with unit element 1. Then an element x € R is
said to be a unit in R if there corresponds an element y € R such that xy = 1

Associates: Two elements a, b are said to be associates if @ = ub for some unit u in R.

Irreducible element: An element a € R which is not a unit is called irreducible ( or a prime
element) if whenever ab = ¢ with b, ¢ € R, then either b or ¢ is unit in R.

Unique factorization Domain: An integral domain R with unit element is called a unique
factorization domain if
() For 0+ a€R,= a is a unit, or a =p,,p,,..p,, Where p, ER,1<i<=mnare
irreducible elements; and
(i If a=p,p,,....0, = q1.92, -, q,, Where each p, and g, are irreducible elements of
R, then n = m and for each i, (1 = i < n) there corresponds j,1 = j < m such
that p; and q ;are associates.

Content: Suppose R is a unique factorization domain. Let
f(x)=ay,+a,x+a,x*+-+a,x™ € R[x]. The content of f(x) is defined to be a g.c.d.

ofay ay, ...,a,,.

Primitive: Suppose R is a unique factorization domain. A polynomial f(x) over R is said to
be primitive if ¢(f) = 1.

17.7 ANSWERS TO SELF ASSESSMENT QUESTIONS:

17.3.9: Suppose f(x) =a, + a;x +a,x* +-+a,x™. Since ¢(f) isa g.c.d of
ag, @y, ..., a,,, We have that a, = c(f).b;, for some b, € R for 1 = i < m, and the g.c.d of
by, by, e, b, i 1.
Now, f(x) =a, + a;x +a,x*+ - +a, x™
= c(f)by + c(F)byx + c(F)byx® + -+ c(f)byx™
=c(f)[by + byx + byx* + -+ b x™]
= a.f,(x) where f,(x) = by + byx + byx* + -4 b x™
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17.3.12: We prove this result by using the principle of mathematical induction on k
If k = 2, then the result follows from the corollary 17.3.11.
Now suppose the induction hypothesis that the result is true for k =n — 1.
Now consider e(f,. f5. ... f,) = ¢(fi-for oo fn—1(f,))  (bycorollary 17.3.11)
= c(fifor frma)-c(fy)
=c(fy)-c(fs).e(f3). ... e(f,,) By induction hypothesis.
This shows that c(f,. fo. ... f3) = c(f,).c(fo).c(fy)- . c(f,)
This completes the proof of the corollary.
17.3.14: Suppose f(x) = ay + a;x + a,x* + -+ a,,x™ € F[x]
We know that F = {%,"p,q € R and q # 0}

Therefore a, = ? for some p,,q, e Rfor1 < i <n.
L

NOWf(xj ::_:—F:—:'_x + --._I_:_-‘lxrz

n

1
- G y=n [pl}qqu =l +P1C}'1C}': e X + - +P,1f]"1'f]"g q,!x”]

1
=~ fo(x) where a = q4q,4; -.q,, € R and

fo(x) = Pod19z -Gy + P19197 - Qp-X + =+ Pyq19; .0, X" € R[],
This completes the proof.

17.3.17: Suppose that a(x) = p(x)g(x) for two polynomials p(x) and g(x) over R.

Now 0= deg(a[x]) = deg[:p(x]) + deg(q(x)) = deg(p(x)) = 0 = deg(g(x)) = p(x)
and g(x) are constant polynomials.

If p(x) =p and q(x) = g, then a = a(x) = p(x)g(x) = pg, a contradiction to the fact that
a is irreducible in R. Hence a(x) € R[x] is also irreducible.

17.3.19: We prove this corollary by mathematical induction on n.

If n = 1, then by theorem 17.3.18, we get that R [x, ] is an unique factorization domain.
Suppose the induction hypothesis that if R is a unique factorization domain, then R, _,is also
a unique factorization domain.

Now by the theorem 17.3.18, we get that R[x, x,, ..,x,]=R,_,[x,] IS & unique
factorization domain.

17.3.20: Since F is a field, it is an integral domain.

Since every non zero element of F is a unit, we have that F is a unique factorization domain.
Therefore by the self-assessment question 17.3.19, we get that F[x,,x,, ..., x,] is a unique
factorization domain.
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LESSON - 18
VECTOR SPACES-ELEMENTARY BASIC

CONCEPTS

OBJECTIVES:
The objectives of this lesson are:

% Define the vector space over the field F, examples, define subspace of a vector space,
define homomorphisms on vector spaces properties of vector spaces

Define kernel of a homomorphism and define linear transformation

Define quotient of quotient space

Understand and derive some properties of quotient space

Define isomorphism on vector space and able to study that every homomorphic image of
a vector space is isomorphic to its quotient space

X/
X4

L)

X/
X4

X/
LX)

X/
X4

L)

STRUCTURE:

18.1. Introduction

18.2. Elementary basic concepts

18.3. Model examination questions

18.4 Summary

18.5 Technical Terms

18.6 Answers to Self Assessment Questions
18.7 Suggested Readings

18.1. INTRODUCTION:

In this Lesson we shall denote the set F[x] as the set of all polynomials in x over the
field F, and V¥, as the set of all polynomials of degree less than n. We prove some important

properties on vector spaces and also we derive every homomorphic image of a vector space is
isomorphic to its quotient space. Later, we define internal direct sum of vector spaces and
prove that internal direct sum of vector space V is isomorphic to external direct sum of .

18.2. ELEMENTARY BASIC CONCEPTS:

18.2.1. Definition: A non-empty set V' is said to be a vector space over a field F if V' is an
abelian group under an operation which we denote by +, and if for every a € F,v eV there is
defined an element, written aV, in subject to

1 a(v+w)=av+aw

(a+pB)v=av+pv

a(p)=(ap)v

lv=y, forall a,f €F;v,weV where the 1 represents the unit element of F under

multiplication.
We shall consistently use the following notations:
a. F will be a field.

M w
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b. Lower case Greek letters will be elements of F; we shall often refer to elements of F

as scalars.
c. Capital Latin letters will denote vector spaces over F.

d. Lower case Latin letters will denote elements of vector spaces. We shall often call
elements of a vector space as vectors.
18.2.2. Example: Let F be a field and let & be a field which contains F asa subfield.

Here K is the set of vectors. Additions of vectors is addition composition in the field K. Since
K is a field, we have that (K, +) is an abelian group.

Now the elements of F constitute the set of scalars. The composition of scalar multiplication
is the multiplication composition in the field K.

Since K is a field, we have ave K,V a e F,ve K (‘.'Ol,VE K).

If 1 is the unity element of K, then 1 is also the unity element of the subfield F. Let
a,feFandv,weK.

() a(v+w)=av+aw (- By left distributive law in K)

(i) (a+pB)v=av+pv (- Byright distributive law in K)

(iii) (af)v=a(pv) (- By associativity of multiplication in k)

(iv) 1v=v and 1 is the unity element of K. Since 1 is the unity element of K, we get

lv=veK
Therefore, K is a vector space over the field.

18.2.3. Example: Let F be a field and let V' be the totality of all ordered n —tuples over F.
eV :{(al,az,...,an)/ai eF,1<i< n}
Two elements (a4, ..., ) and (B, B,..... B,) of V" are declared to be equal if and only if

a =g foralli=12,..,n
Now, we introduce the requisite operators in I to make of it a vector space by defining:

1. (s ))+(Bos Boroo By) = (0, + Bty + Py, vty + 3,

2. 7wy ay) = (rey, yat,,.., 7, ), for y e F.
First we prove that (V, +) is an abelian group.

Let (o4, ¢ty (B Bovees Be) (710 Vs oo ¥ ) €V
NOW[(al,az,...,an)Jr(,Bl,ﬂz,...,ﬁn)]+(71,;/2,...,7n)
=(a+ Bty + By + B)+ (71 Vo on V1)

(o +B)+ 7 (@+ By) + Varen (@ + B,) +7,)
(a (Bi+7) ., +(Ly+7,) e, +(,Bn+y/n))
(
(

Ay, Oy @ )+ (B4 710 By + Vg B+ 71)
Gy & +|: ﬁyﬂz' 1ﬁn)+(7/117/2'---'7n):|

.. Addition is assomatlve inl”.

Existence of additive identity: Let (o, ,...,c, ) €V
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Since

Now (e, @y, ..., x, ) +(0,0,...,0) = (e, + 0,2, +0,...,, + 0
0eF, wehave(0,0,...,0) eV (@502, ) +( )=(a,+0,a, a, +0)
=(a, 05, 2,)

~.(0,0, ...,0) is the additive identity element of V.
Existence of additive inverse: Let (o, a,...,,) €V . Then (-ay,—at,,...,—ct, ) €V

Now (e, @y, ..., ) +(—4, =y i —t) ) = (o, — oty @y — 0ty .t — 1))
-(0,0,...,0)
(-, —a,,...,—a,) is the additive inverse element of (o, ..., ;)
~(v,+) isagroup.
Commutativity of addition: Let(ey, ;... ),( B, By ) €V
NOW (e, @y, o))+ (B Bovoos By ) = (s + Bty + By vty + B,)
=(B+a,f+ ... B, +a,)

.. addition is commutative.
~(v, +) is an abelian group.

Let (al,az,...,an),(ﬂl,ﬁz,...,,Bn)eV and y,,7, €F

1. Now 7/1[(al,az,...,an)+(,Bl,,32,...,,6’n)] =7/1(051+ﬂ1,0{2 + L5, +ﬂn)
:(yl(al+ﬂ1),yl(a2+ﬁ2),...,;/1(an+ﬁn))
= (o + 1.8 710 + 1By 110 + 118,)
= (10, 118 1100 )+ (1B 1B )
=r (o, )+ 7 (B Bores By)

2. Now (71+72)(051’a2’---’an):((71+72)a1'(71+72)a2’---'(71+72)0‘n)
(710‘1"'72“1’710‘2 17,05, 1, +72an)
(710‘1’7/1052’---17/105n)"‘(7/2051’7/2“2’---’720%)

(e, oy ay)+7, (0,0 0,)

3. Now (7172)(“110‘2’"-1an): ((}/172)0(1,(}/172)0(2,...,(7/17/2)0!”)
= (1 (7). 71 (7,2) 1071 (7,2,))
= 7/1(720‘1’72a2'---'72an)

=N (72 (al’aZ""’an))
4. Let(ey,a,,...,0,) €V andle F

Now (e, @y, ) = (L, 1oy, L) = (4, 2,0 2 )
-V is a vector Space over F.

18.2.4. Example: Let F be any field and let V = F[x], the set of polynomials in x over F.
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Then V = F[x] is a vector space over F with respect to addition of two polynomials as a
addition of vectors and the product of polynomials by an element of F as a scalar
multiplications.

18.2.5. Example: In F[x] let V, be the set of all polynomials of degree less than n. Using the
natural operations for polynomials of addition and multiplication, V, is a vector space over F.

Here V, ={ao taX+..+ta, X" a,a,,..a € F}

18.2.6. Definition: Let V' be a vector space over F and W <V . Then W is said to be a
subspace of V' if W itself is a vector space over F with respect to the operations of vector
addition and scalar multiplication in V.

Equivalently, W is a subspace of V¥ whenever w,w,eW;qa,feF implies that
aw, + Sw, eW

18.2.7. Definition: Let U/ and V" be two vector spaces over F. The mapping T of U into V' is
said to be a homomorphism if
1 (u+u,)T =uT+u,l
2. (au)T =a(uT);forallu,u,eUandall x e F
If T, in addition, is one-to-one, we call it as an isomorphism.
Define kernel of T as {u eU/uT = 0} , Where 0 is the identity element of the addition in V.

18.2.8. Self Assessment Question:
Kernel of a homomorphism T is a subspace of L.

18.2.9. Note:
1. The set of all homomorphisms of IJ into V will be written as Hom(U, V).

2. Hom(U,V) can be shows to be a ring, is called the ring of Linear transformations on
u.

3. O represents the zero of the addition in V', O represents the zero of the addition in F

and — v represents the additive inverse of the element v of V.
4. Kernel of a homomorphism T is (0) if and only if T is an isomorphism.

18.2.10. Lemma: If V' is a vector space over F then
1. a0=0foraeF
Ov=0OforveV

2.
3. (~a)v=—(av)foraeF,veV
4. if v#0,then qv=0impliesthat « =0

Proof: 1. Now a0=a(0+0)=a0+a0 (- 0+0=0)
=0+a0=a0+a0(- a0V and 0+a0=a0)
= a0=0 (" By right cancellation law in V")
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2. Now ov =(0+0)v=0v-+0v (- 0+0=0)
—O0+0v=0v+0v (~-OveV and O+0v =0v)

=0O=0v (" V is an abelian group with respect to addition of vectors and by right
cancellation law in V")

3. By (2), we have O=0v=(a+(-a))v =av+(-a)v
= av+(-a)v=0
= (—a)vis the additive inverse of av
= (—a)v=—(av)
4. Let v=0and av=0.
Suppose o =0. Then o™ exists.
Now av=0=a ' (av)=a0=0= (a'a)v=0=1v=0=v=0.
Therefore we get a contradiction that v = 0.
Hence o =0.

Let V be a vector space over F and W be a subspace of V . Considering these merely as a
abelian groups construct the quotient group V/W ; its elements are the cosets v+W,where

veV,ie VW ={v+W/veV}. SinceV is an abelian group, v+W =W +v,for all veV.

18.2.11. Lemma: If V is a vector space over F and if W is a subspace of V, then V/W isa
vector space over F , where v, +W,v,+W eV/W and « € F,

LoV W)+ (v, +W) = (v, +V,) +W
2. a(v, +W)=av, +W.
V /W is called the quotient space of V by W,

Proof: Let V be a vector space over F and W be a subspace of V.
We have that V/W ={v+W /veV|.
Define +' on V/W as (v, +W)+(v, +W)= (v, +V,)+W, forall v,,v, eV.
We prove that (V/W ,+)is an abelian group.
Let v, +W,v, +W,v, +W,v, +W eV /W with v, +W =v, +W and v, +W =v, +W.
Then v, —v, eW and v,-v, eW.
Since W is a subspace of V, we get that (v, —Vv, )+(v; -V, ) eW. That implies
(v, +V3)—(v, +Vv,) eW. Therefore (v, +v;)+W = (v, +Vv, )+W and hence
(V, +W ) +(v3 +W ) = (v, +W )+ (v, +W). Thus '+" is well defined.
Let v, +W,v, +W,v, +W eV /W.
Now
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(v W) (v, +W ) + (v +W ) = (v + W )+ ( (v, +V5) +W )

v+ (v, +V,))+W

(v, +V, +v3)+W
(v1+ ) ) (v, +W)
(

Vy W)+ (v, + W) )+ (v +W)

Therefore '+' is associative.
Let v + W € V/W. Then clearly, we have that 0+ W € %
Now (v+ W)+ (0+W)=(v+0)+W=v+W
Therefore (v+ W)+ (0+ W) =v+ W, forall v+ W E:—V.
Hence 0+ W = W is the additive identity element in V /W.
Letv + W E%. Since v €V, we getthat —v € Vand hence —v + W € V + ¥,
Now (v+ W)+ ((—)+ W) =(v+—(—v))+W=0+W.
Therefore (v+ W)+ ((—v) + W) =0+ W, forallv + W € % .
Hence —v + W is the additive inverse element of v + W in% :
Thus (:—V,ﬂ is a group.
Letv, + W, v, + W E
Since vy, v, €V, we getthat vy + v, = v, + v,.
Now(wv, + W)+ (v, + W) =(v, + v, )+ W= (v, + v, )+ W =(0, + W)+ (v, + W)
Therefore [%, +) is an abelian group.
Define - :Fx:—V%%bya-(u+W]=rx-u+W.
Letv, + W, v, + WeV/Wwithv, + W =v, + W.
Thenvy —v, EW = a(v, —v,) EW, foralla EW = av, —av, EW
Zavr, +W=av, + W =2 alv; + W) =a(v, + W)
Therefore - is well defined.
Leta,f €W and v, + W,v, +W € —
Now a((vy, + W)+ (v, + W)) = a( (v, + v,) + W)

=alv, +v,) +W

= (av, + av,) + W

=(av, + W)+ (av, + W)

=a(v, + W)+ a(v, +W).
Now (a+ B)(v, + W) =(a+ f)v, = (av, + Bv,) + W

=(av, + W) + (Bv, + W)
=a(v, + W)+ B(v, + W)
Now (aB)(v, + W) = (af)v, + W
=a(fv,)+W
=a(fv, + W)
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=a(f(v, +W))
Now 1{v,+W)=1.v, + W (since 1 € F)
=v, + W
Therefore V /W is a vector space over F.

18.2.12. Theorem: If T is a homomorphism of U onto V with kernel W, then V is
isomorphism to U//W. Conversely, if U is a vector space and W, a subspace of U, then
there is a homomorphism of U onto U/W'.

Proof: Let T: U — V' be a onto homomorphism with kernel W.

Define qb:% = Vby¢(u+Ww)=T(u)

Letu, + W,u, + W e U/W.

Now

wyFW=u,+Weu —u, EW = T(u, —u,) = 0(since W = Kernelof T) &
T(u,) —T(u,) =0 (since Tis a homomorphism) & T(u,) = T(u,)  ¢(u, + W) =
¢(u, + W)

Therefore ¢ is well defined and one-one.
Let T() € V. Then there exists an element « + W € U /W such that ¢(u + W) = T(u).
Therefore ¢ is onto.
Letu, + W,u, +W e U/W and a € F.
Now ¢((uy + W) + (u,+ W) = ¢ ((u, + u,) + W)
=T(u, +u,)
= T(u,) + T(u,) (since T is homomorphism)
=¢(uy, + W)+ d(u,+ W).
Now ¢(a(u;, + W)) = ¢(au, + W)
= T(au,)
= aT(u,) (since T is homomorphism)
=ap(u, + W)
Therefore ¢ is a homomorphism and hence% =V.

Conversely, let U be a vector space and W be a subspace of U.
Define ¢: U = U/W by ¢(u) = u + W.
Clearly, we have that ¢ is well defined.

% , we have that ¢ (1) = u + W. Therefore ¢ is onto.
Letu,,u, EU and @ € F.

Now g, +u,) =uy +u, + W =(u, + W)+ (u, + W)= p(u,) + ¢ (u,)
Now ¢(au,) = au, + W = alu, + W) = ap(u,)

Therefore ¢ is homomorphism

Hence ¢ is onto homomorphism.

Foreveryu + W €
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18.2.13. Definition: Let VV be the vector space over F and let U,,U,,...,U, be subspaces of
V. V is said to be the internal direct sum of U,,U,,...,U,, if every element v € VV can be
written in one and only one way as v = u; +u, + --- +u,, where u; € U;,

18.2.14. Definition: Let V}, V5, ..., ¥, be any finite number of vectors spaces over the field F.
Consider V=1, x 1, x .. x V,, is the set of all ordered n —tuples (v, v,, ..., v,)

where v; €V, ie. V={(v, v, ..,v, )| v;E V., 1 =i <n}. Two elements (v, v,, ..., v,)

and (vy,v;,...v,) of V to be equal if and only if v,=v] for 1=<i<n. Let

(v, vy, cea 0,), (W, Wy o, ) EV and a €EF Define
(v, vy, e, ) + (W, Wy, ow) = (v +wy, v, Fwy, v, +w,) and
alvy, vy, ..., v,) = (av,, av,, .., av,).

Clearly, V' is a vector space with its operations over F. Thus V' is called external direct
sums of ¥, V5, ...V, and isdenoted by V =V, 6V, & .. B V..

18.2.15. Theorems: If V' is the internal direct sum of Uy, U,, ..., U, then V' is isomorphic to
the external direct sum of Uy, Us, ..., U,..

n

Proof: Let V' be the internal direct sum of U, U,,...,U,. Then every element v € V¥ can be
uniquely writtenas v = wy +u, + -+ u, , whereu; EU; forl =i = n.

Let V' be the external direct sum of U, U,, ..., U,
ThatisV' =U, & U, & ..E U, = {u,us .., u,|u; EU, for 1 <i <n}
We prove that ¥ is isomorphic to V'. DefineT:V — V' by

T(v) =T(u, +u, ++u,) = (u, s, ., u,).

T is well defined and one —one: Let v,v" € V. Then v, v’ can be uniquely written as
v=u; +u,+ +u, whereu, U, forl <i < nandv' =u'| +us+--+u), where
u; €U, forit<i<n.

Now v = v' & wy+ uy + - +u, =uj +uy+ -+ u,

= (uy —u))+ (u,—ub)+ -+ (u,—u,)=0

Su,—u;=0fori<i<n

sy, =u,forl<i=n

& (g, Uq, e, uy) = (u) Fub+ -+ ul)

= T(u +u, ++u,)=T() +us+-+u),)

= T(v)=T(v")

~ T is well defined and one - one.

T is onto: Let(uy, 14, ..., u,,) € V'. Then there exists an element

v=u, +u,+ —~+u, EVsuchthat T(v) =T(u, +u, +-+u,) = (u,uy .., u,).
Therefore T is onto.

T is homomorphism: Let v, #' € V and @ € F. Then v, v’ can be uniquely written as
v=u, +u,+ +u, whereu, EU,forl <i <nandv' =u)+u,+ -+ u,, where
u; EU,fort<i<n.

Now T(v+v') = T(uy +u, + -+ u, +u) +uy+-+u,)
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=T(u, +uy +u, +ub+-+u, +u,)
= (uy +ulu, +ub, ., u, Tul)
= (uy +ug+oHuy) +(uy Fus+ o+ ul)
=T(v)+T(v")
Now T(av) = T(a(u, + u, + -+ u,))
=T(au, + au,+ -+ au,)
= (auy, au,, ..., au,
= alu,,u,, ..., u,) = al(v)
= T'is homomorphism and hence T is an isomorphism.

18.2.16. Self Assessment Question: If U and V' are vector spaces over F, define an addition
and multiplication by scalars in Hom(U, V") so as to make Hom(U, V) into a vector space
over F.

18.3. MODEL EXAMINATION QUESTIONS:

18.3.1. If V' is a vector space over F then prove that
1 a0=0foraeF
2 Ov=OforveV

3 (—a)v=—(av)foraeF,veV
if v=0,then av=0implies that « =0

18.3.2. If V is a vector space over F and if W is a subspace of V, then show thatV /W is a
vector space over F , where v, +W,v,+W eV/W and o € F,

Lo (v +W)+(v, +W) = (v, +v,) +W
2. a(v,+W)=av,+W.
V /W is called the quotient space of V by W,

18.3.3. If T is a homomorphism of I/ onto ¥ with kernel W, then prove that V' is isomorphism
to U/W. Conversely, if U is a vector space and W, a subspace of U, then show that there is a
homomorphism of U onto U /W',

18.3.4. If V is the internal direct sum of U,, U,, ..., U, then prove that ¥ is isomorphic to the
external direct sum of U,, Us, ..., U,..

18.4 SUMMARY:

We proved some important properties on vector spaces and also we derived every
homomorphic image of a vector space is isomorphic to its quotient space. Later, we proved
that internal direct sum of vector space V' is isomorphic to external direct sum of V.

18.5 TECHNICAL TERMS:

Vector Space: A non-empty set V is said to be a vector space over a field F if V is an abelian
group under an operation which we denote by +, and if for every o € F,v eV there is defined

an element, written aV, in subject to
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a(V+w)=av+aw
(a+pB)v=av+pv
() =)y

lv=y, forall «,fp € F;v,weV where the 1 represents the unit element of
F under multiplication.

P w np P

Subspace: Let V' be a vector space over F and W <V . Then W is said to be a subspace of V/
if W itself is a vector space over F with respect to the operations of vector addition and scalar
multiplications in V.
Equivalently, W is a subspace of V¥ whenever w,w,eW;qa,feF implies that
aw, + Sw, eW
Homomorphism: Let U and V' be two Vector spaces over F. The mapping T of U into V' is
said to be a homomorphism if

Lo (u+u,)T=uT+u,l

2. (au)T=a(uT);forallu,u,eUandallx e F
If T, in addition, is one-to-one, we call it as an isomorphism.
Define kernel of T as {ueU /uT =0}, where 0 is the identity element of the addition in V.

Internal Direct Sum: Let V' be the vector space over F and let U,,Us,, ..., U, be subspaces of
V. V is said to be the internal direct sum of U,,U,,...,U,, if every element v € V' can be
written in one and only one way as v = u, + u, + -+ u,, where each u; € U,.

External Direct Sum: Let V,, V5, ..., V,, be any finite number of vectors spaces over the field
F,

Consider V =V, XV, X .. X V,, is the set of all ordered n — tuples (v, v,,...v,)
wher v, €V, ie. V ={(v, vy, ..,v, )| v, E V., 1 =i < n}. Two elements (v, v, ..., v,,) and
(v, v;,..,v,) of ¥V to be equal if and only if v,=v for 1<i<n. Let

(vy, vy, .v,), (W, Wy, owr, ) EV and aEF Define
(vy, vy, ev,) +(wpwy, ow, ) = (v Fwy, v, +wy, v, +w,) and
alvy, vy, ...v,) = (avy, av,, ..av, ).

Clearly, V is a vector space with its operations over F. Thus V is called external direct
sums of V.V, ...V, and isdenoted by V =V, &V, & .G V,.

18.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:

18.2.8. Let W be the kernel of a homomorphism of f.Let u,v€ W implies
flu+v)=Ffuw)+f(v)=04+0=0. So that u+veEW., Let a€F. So that
flau) = af(u) = a.0 = 0. Hence au € W. This satisfies that the conditions of subspace.
Hence W is a subspace.

18.2.16. Let T.S € Hom(U,V),a € F. Define T+ 5:U =V as (T + 5)(u) = Tu+ Su for
all uin U. So that T+ S is a homomorphism of U into V. T + 5 € Hom(U,V). Define
aT:U =V as (aT)(u) = a(Tu). That is aT is a homomorphism of U into V. Hence
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aT € Hom(U,V). It is easy to show that Hom(U,V) is a vector space over F under the
addition and multiplication by scalars.
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LESSON - 19
LINEAR INDEPENDENCE AND BASES

OBJECTIVES:
The objectives of this lesson are to

X/
X4

L)

define the linear span and discuss the properties of linear span

define finite dimensional vector space, linearly independent, dependent vectors over a
field and solve some problems on linearly independent and dependent vectors.

define basis of a vector space and prove that every finite dimensional vector space V is

isomorphic to F™.
% prove that any two bases of a finite dimensional vector space V' over F have the same

number of elements.
% Prove that for every subspace W of a finite dimensional vector space V is finite

dimensional, dim W < dim ¥ and dim% =dimV —dimW,

X/
X4

L)

X/
°

STRUCTURE:

19.1. Introduction

19.2. Linear independence and bases

19.3. Model examination questions

19.4 Summary

19.5 Technical Terms

19.6 Answers to Self Assessment Questions
19.7 Suggested Readings

19.1. INTRODUCTION:

In this lesson, we consider L{5) as linear span of 5 where 5 is a non-empty subset of
vector space V over a field F. We can prove that L(S5) is a subspace of V' and study the

properties of linear span. We define linear independent, dependent vectors and finite
dimensional vector space V and later prove some results on them.

19.2. LINEAR INDEPENDENCE AND BASES:

19.2.1. Definition: Let V is a vector space over F and if v,V,,...,v, €V then any element of
the form aVv,+a,V,+:--+a,V,,where the o, €F, is a linear combination over F of

n'n?

Vi, Vy e, Vs

19.2.2. Definition: If Sis a nonempty subset of the vector space V, then L(S),the linear
span of S, is the set of all linear combinations of finite sets of elements of S.
e, L(S)={oVy, BN, + BN, 7oV, + 7oV +- -+ 7,V [V Vy o,V €Sand g, B8, 7,'s e F }

19.2.3. Lemma: L(S)is a subspace of V.

Proof: Let V be a vector space over F. Let v,we L(S). Then v=A45s + 4,5, +---+ 4.5, and
W=t + 28, +---+ .t where the A's, u'sare in F and thes,,t,areallin S. Let a, S e F.
Now
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0N+ﬁlvv:a(ﬂlsl+ﬂ’252+“'+2“nsn)+ﬂ(/u’1tl+:u2t2+"'+/umtm)

=(@d)s, +(ah)s, +---+(ak)s, + (Bt + (Bip)ty + -+ (B )t
Therefore av+ pwe L(S). Hence L(S)is a subspace of V.

19.2.4. Lemma: If S,T are subsets of V, then
1. ScTimplies L(S)c L(T).
2. L(SUT)=L(S)+L(T).
3. L(L(S)) =L(S).

Proof:

1. Assume thatS<T. Let veL(S). Then v=As +4,5,+---+AS,, where the A'sare
in Fand thes,'sare all in S. Since ScT,we get that v=A4sS, +A45S,+:--+ A4S,
where the A'sare in Fand thes/'sare all in T. Therefore velL(T). Hence
L(S) < L(T).

2. Let velL(SUT). Then v=AS +A4S,+ --+A4S, +ut +t, +--+ .t . where

theA's, u'sare in Fand theA's, u'sare all in S UT.Since A's,u'sare all in SUT,
we can choose S,,S,, S, €Sand t,t, -t eT. Then
AS + 4,8, +--+ A4S, € L(S)and gt + wot, +---+ .t € L(T). Therefore v=an
element of L(S)+an element of L(T).
Thereforeve L(S)+L(T)and hence L(SUT)< L(S)+L(T). Conversely, let
veL(S)+L(T). Then V=a+ [,where aeL(S), peL(T). Since
a € L(S), B eL(T),we have that o =linear combination of finite number of elements
of Sand g =linear combination of finite number of elements of T. That implies
V=a+ f=linear combination of finite number of elements of SUT. Therefore
veL(SuT)and hence L(S)+L(T)cL(SUT).Thus L(SUT)=L(S)+L(T).

3. Since leF,we have that s=1seL(S), for all seS.Therefore S c L(S).By
condition 1, we have that L(S) < L(L(S)). Let ve L(L(S)). Then veL(S). Then
V=AS + 4,8, +:--+ 4,8, where the A'sare in F and thes;'sare all in L(S). Since
s/'sare all in L(S),we can write s =5 +a5s, +-+as, ,where
a'seF,s'seS and 1<i<n.

Now,
V= A (@Syy + S+ + 0y Sy ) T A (QarSr QS+ + 0y Sy ) oo A (@S + S o 2 Sk)
That implies v e L(S). Therefore L(L(S)) < L(S)and hence L(L(S))=L(S).

19.2.5. Definition: The vector space V is said to be finite-dimensional (over F ) if there is a
finite subset Sin V such that V = L(S).

Note that F™is finite-dimensional over F,for if Sconsists of the nvectors
,0,--,0),(01,:--0),---,(0,0,---,1), then V = L(S).
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19.2.6. Definition: If V is a vector space over the field F and if v,,v,,---,v, are in V, we say
that they are linearly dependent over F if there exist elements A4, 4,,-- 4,in F,not all of
them 0,such that A v, + AV, +---+ A4V, =0.

If the vectorsv,,v,, --,v,are not linearly dependent over F,they are said to be linearly
independent over F.

19.2.7. Problem: Verify that given vectors(1,0,0),(0,1,0),(0,0,1) are linearly independent or
not
Solution: Lete,, &, o, € F.Consider «,(1,0,0) + «,(0,1,0) + ,(0,0,1) = (0,0,0).

Then a,=0,0,=0,,=0. Hence given vectors (10,0),(010),(0,01)are linearly
independent.

19.2.8. Problem: Verify that given vectors (1,1,0), (3,1,3), (5,3,3) are linearly independent or
not.
Solution: Lete,, a,, @, € F. Consider «,(1,1,0) + «,(31,3) + ,(5,3,3) = (0,0,0).

Then (e, +3a, +5a,, o, + o, + 3, 3¢, + 3;) = (0,0,0). That implies

o, +3a, +50, =0, oy + a0, + 3, =0, 3z, + 3, =0. From the equation 3e, + 3, =0, we get
that «, =—a;. If a; =1then we get thata, =—1and o =-2.

Hence given vectors (1,0,0), (0,1,0), (0,0,1) are linearly dependent.

19.2.9. Lemma: If v,,v,,---, v, €V are linearly independent, then every element in their linear
span has a unique representation in the form Av, + 4,v, +---+ AV, with the 4 € F.

Proof: Letv,,V,, -+, v, €V be linearly independent elements. Take S ={v1,v2,---,vn}. Suppose
X € L(S) has two representations say x= A4V, + AV, +---+ A v, and

X=44Vy + LN, +- 4 V.

Then0=X—X= (4 — )V, + (4, — L)V, +---+ (4, — 1,)V,, . Since v, V,,---,v, €V are linearly
independent, we have that 4, —z4, =0, 4, —, =0,--, 4 — . =0. That implies

A=, A =1, A, = .. Hence every element of L(S) has unique representation.
19.2.10. Theorem: If v,,Vv,, -+, v, €V then either they are linearly independent or some v, is a
linear combination of the preceding ones, V;,V,,--+,V, ;.

Proof: Letv,,V,, --,Vv, €V .

Suppose v,,V,,---, Vv are linearly independent. Then there is, of course, nothing to prove.
Suppose that v,,Vv,,---, v, are linearly dependent. Then there exist scalars «,a,, -+, &, € F not
all of the «'sare zero such that v, + a,V, +---+a,v, =0. Let k be the largest integer such
that o, #0, for k<n and ¢; =0, for all i >k. Then v, +a,V, +---+ v, =0. That implies

aVN, =—(aVv, +aN, +--+a, N, ).
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Since «, is non zero element of F, we get that ' € F. That implies
V, = (—a, o) + (—a tapV,) + -+ (—a, eV, ,)- Therefore v, is a linear combination of its
predecessors.

19.2.11. Corollary: If v;,v,,---,v, in V have W as linear span and ifv,,v,,---,v, are linearly
independent, then we can find a subset v,,v,,---,v, of the

formv,,v,,---v,, v,,v; ,--»V; consisting of linearly independent elements whose linear span is
also W.

Proof: Suppose v,,V,,---, Vv, are linearly independent. Then there is nothing to prove. Suppose
that v,,v,,---,v, are linearly dependent. By the above theorem, choose the first element
v, such that v, is the linear combination of its predecessors. Since Vv;,v,,---v, are linearly
independent, we have that j > k.

Thus v;,V,,-++V; 1,V ,;, -V, has n—1 elements. Therefore, its linear span is contained in W.
However, we claim that it is actually equal to W. Let xeW.Then xcan be written as a
linear combination of v,,v,,---,v

That isx =V, +a,V, +--+ Vv, +--+a;V; +--+a,V,. Since v; is the linear combination of
its predecessors, there exist B, 3,, -+, B;, € F such that v; = Bv, + B,v, +---+ B, ,v; ;. That

implies X =V, + @V, +- -+ Vy + -+ (BV + BV, +o+ BV, )+ + V.

j+1?

n-"

That implies x= (o, + a; BV, +(a, + & Bo)Vy ++ -+ (@ + o B )V + @ Vg + o+ V.

19.2.12. Corollary: If Vis a finite-dimensional vector space, then it contains a finite set
v, V,,--+, V. of linearly independent elements whose linear spanis V .

Proof: Let V be a finite-dimensional vector space. Then there exists a finite subset
S :{vl,vz,---,vm}such that L(S)=V. By the above corollary, there exists a finite subset of

these denoted by v;,V,,--+, v, consisting of linearly independent elements, whose span is V.

19.2.13. Definition: A subsetS of a vector space V is called a basis of V if S consists of
linearly independent elements (that is, any finite number of elements in Sis linearly
independent) and V = L(S).

19.2.14. Corollary: If V is a finite-dimensional vector space and if u,,u,,---,u_ span V then
some subset of u,,u,,---, U, forms a basis of V.

19.2.15. Result: If V is a finite dimensional vector space over F then V is isomorphic to
F®,

Proof: Let V be a finite-dimensional vector space. Then V has finite basis {v;,v,,---V,}.
Let veV.Then v has a unique representation in the form v =V, + a,V, +---+,V, With

a,,a,,-a, €F. Define ¢:V —>F™byd(V) =d(aV, + oV, ++a,V,) = (o, ) .
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Clearly, ¢ is well defined. Let v,v'eV such that ¢(v) =g¢(v'). Since v,v'eV, v,v'have a
unique representations in the form v=aVv, + a,v, +---+¢,Vv, and
V'= L[V, + BN, ++ SV, where o, -, B, By B, € F.Since ¢(v) = ¢(v'), then we
have that g(eV, +a,V, +---+ V) = d(BV, + BV, +---+ B.V,). That implies
(0, 0,)= (0, By B,)- That implies o, = £, for 1<i <n. That implies
N, + N, + -+ a N, = BV + BV, +---+ BV, . That implies v=v'.Hence ¢ is one-one.
Let(ay, a,, - a,) € F™. Then there exists v = oV, +a,V, +---+a,v. €V such that
o(V) =(oy,@,, -, ). Therefore ¢is onto. Letv,v'eV. Then v,v'have a unique
representations in the form v=ov, + a,V, +---+ v, and v'= BV, + BV, +---+ B V,, where
4,0y Oy Py Py By € F
Now
P(V+V) =gV, + oV, +--+a Vv, + BV + BN, ++ V)

=d(( + BVy +(ay + BV, +-+ (@, + B)V,)

=(a+ B ay+ P+ By)

=(ay, @y, )+ (B, By By)

= (V) + (V).
Let e F.
Now

d(av) =d(a(aV, + .V, +--+a.V,))
=g(aaV, +aa,V, +---+aa,V,)
=(aay,0a,, - aa,)
= a(al,az,...,an)
=ag(v).

Therefore ¢ is homomorphism and hence ¢ is isomorphism.

19.2.16. Self Assessment Question: If ¥ is a finite dimensional and T is a homomorphism of
" onto V prove that T must be one-to-one, and so, an isomorphism

19.2.17. Lemma: Ifv,,v,,--- v, is a basis of V over F and if w,,w,,---,w,in V are linearly
independent over F, then m<n.

Proof: Letv,,v,,--- Vv, be a basis of Vover Fand letw,w,,---,w_be linearly independent
elements of V.Since w, €V,we have that w_is a linear combination of v,v,,---,v, and
hence w,,v,,V,,--- Vv, are linearly dependent elements. Since v,,V,,---,v, span V, we have that
W, V,,V,, -V, also span V.

By corollary 1, w,,,v,V,,-+V, has a proper subset w,Vv;,v, ,---V; ,where i, <n-—L1is a basis
of V. Repeat this process by adding W, W,,---w,, finally, we get that
Wy, W, -, W, Vi,V oo, Vg where J <n—(m—1) and is a basis of V. Now consider w.

Since w,,w,,---,w, are linearly independent, w,cannot be written as a linear combination of
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W,, W,,---,W, . Hence at least one v, must belong to the above basis. Therefore m—1<n-1.
Thus m<n.

19.2.18. Corollary: If V is finite-dimensional over F then any two bases of V have the same
number of elements.
Proof: Let v,,v,,---, v, be a basis of V over F and w,,w,,---,w_ be another basis of V. By

above lemma, we get that m<nand n<m. Therefore m=n.

19.2.19. Corollary: F™is isomorphic F™ if and only if m=n.

Proof: F™ has a basis {(10,--+,0),(0,1--+,0),-~,(0,0,---1)} having nelements. Since F™is
isomorphic F™, the images of {(1,0,---,0),(0,1-+,0),-~,(0,0,--- 1)} is a basis of F™if and
only if m=n.

19.2.20. Corollary: If V is finite-dimensional over F then V is isomorphic to F™ for a
unique integer n;in fact, n is the number of elements in any basis of V over F.

19.2.21. Definition: The integer nin the above corollary is called the dimension of V over
F.Itis denoted by dim_V.

19.2.22. Corollary: Any two finite-dimensional vector spaces over F of the same dimension
are isomorphic.

Proof: Let V,V ' be any two finite-dimensional vector spaces over F having the same
dimension n. Then V= F™and V'= F™, Therefore V =V ',

19.2.23. Lemma: If V is finite-dimensional over F and if u,,u,,---,u_ €V are linearly
independent, then we can find vectors u
basis of V.

€V such that u;,u,,---,u_,u_..,---U_. isa

m+l"“1um+r m? Ym+lr’ m+r

Proof: Let V be finite-dimensional over F and u,,u,,---,u, €V be linearly independent.
Suppose v,,V,,---,V, be a basis of V. Since these span V, u,,u,,---,uU,,V;,V,,---Vv,also span

S Uns

V.That implies there is a subset of these of the form uj,u,,---,u,,v,,v, ,---,v, which consists

ms Vi iy

m+21°

of linearly independent elements which span V. Take v, =u,,.;,v, =u

m+17 Vi,

N Vi, = um+r '

Therefore u,,u,,---,u._,u U,,., IS a basis of V.

m? ~m+1? ¥ m+r

19.2.24. Lemma: If V is finite-dimensional and if W is a subspace of V, then W is finite-
dimensional, dimW = dimV and dim(V/W) = dimV — dimW

Proof: Let V be a finite-dimensional and W be a subspace of V. Let us take dimV =n. Then

any n+1 elements in V are linearly dependent. In particular, any n+1 elements in W are
linearly dependent. So we can find a largest set of linearly independent elements in

W, W, W, W, wherem<n. Let weW. Then w, w,w,,--,w, are linearly dependent. That implies
there exist a, a;,a,,,a, € F not all of them are zero’s such that aw+a,W, +a,W, +---+a, W, =0.
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Suppose a=0. Then by the linear independence of the w, we get that ¢ =0, which is a
contradiction. Therefore o #0. Since « € F,we have that ¢ €F. Now
W=—a" (oW + oW, ++a, W, ) = (-0 o)W +(-a o, )W, +++-+(-a ', )W, That implies
W =L ({w, W,,---W,}). Therefore {w,w,,-w, }is a basis of W. Hence W is a finite
dimensional vector space and dimW =m = n=dimV. Thus dimW = diml" Since
w, W, are linearly independent elements of VV, we have that w,w,,-,Ww_,v,,v,,--V, is a basis
of V with m+r=n. Let v+weV /W. Since veV, we have that
V=oW, + oW, +--+a, W, + BV, + BV, +--+ 4 v, That implies
V+W = (oW, + o, W, + -+ W, + BV, + BV, +-+ BV, ) +W
= (oW, +W) + (o, W, + W)+ + (W, +W ) + (B, + W) + (BV, +W ) +---+ (B, +W)
=, (W, W)+, (W, +W) +---+a, (W, +W)+ B, +W) + B, (v, +W) +---+ B, (v, +W).

Since w,w,,-,w_ €W, we have that w +W =0+W for 1<i<m and

hencev+W = £, (v, +W) + B, (v, +W) +---+ S.(v, +W). Therefore

{V, +W,v, +W,---,v, +W } span of V/ /W.

Now we prove that v, +W,v, +W,--- v, +W are linearly independent. Let y,,7,,---,7, € F
such that 7, (v, +W)+y,(V, +W) +---+ 7, (v, +W) =0+W. Then

(v + 7V, -+ 7.V, ) +W =0+W and hence y,Vv, +y,V, +---+7,V, eW. That

implies v, +7,V, +---+ 7.V, =W, + a,W, +---+ ¢, W, and hence

(= IV + (=P )V, -+ (=7, )V, + W, + W, +---+a, W, =0. Since

(V1 VooV, W, Wy, -+, W, }iS @ basis of V, we have that o; =0and y, =0, for all i, j. That
implies {v, +W,v, +W,--- v, +W s linearly independent. Therefore

{V, +W,v, +W,---,v, +W } is a basis of V /W. Hence

dim (V/W) = r = n—m = dimV — dimW

Thus dim(V /W) =dimV —dimW.

19.2.25. Corollary: If Aand B are finite-dimensional subspaces of a vector space V, then
A+ B is finite-dimensional and dim(A+ B) =dim(A)+dim(B)—-dim (AN B).

Proof: We have that AJE: B ~ A A g Since Aand B are finite dimensional, we get that
N
dim(A+B)-dimB =dim ﬂ =dim i =dim A—dim (AN B). Therefore
B ANnB

dim (A+B) =dim A+ dimB—dim (AN B).

19.3. MODEL EXAMINATION QUESTIONS:
19.3.1. Prove that L(S) is a subspace of V.

19.3.2. Verify that given vectors (1,1,0), (3,1,3), (5,3,3) are linearly independent or not.
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19.3.3. If v,,v,,---,v, €V then show that either they are linearly independent or some v, is a
linear combination of the preceding ones, V,,V,,--+,V, ;.

19.3.4. If V is a finite dimensional and T is a homomorphism of V" onto V' prove that T must
be one-to-one, and so, an isomorphism.

19.3.5. If V is finite-dimensional and if W is a subspace of V, then prove that W is finite-
dimensional, dimW = diml" and dimV /W = dimV — dimW.

19.4 SUMMARY:

We proved that L{5) is a subspace of I and study the properties of linear span. We defined
linear independent, dependent vectors and finite dimensional vector space V and later,
derived some results on them.

19.5 TECHNICAL TERMS:

Linear Combination: Let V is a vector space over F and if v,,V,,...,v, €V then any
element of the form v, + v, +---+ ¢V, where the ¢; € F, is a linear combination over
Fof v,,v,,...,V,.

Linear Span: If Sis a non empty subset of the vector space V, then L(S), the linear span of
S, is the set of all linear combinations of finite sets of elements of S.
e, L(S)={ogVy, BN, + BN, 7oV, + 7oV +- -+ 7,V [V, Vy o,V €Sand g, B8, 7,'s e F }

Finite-Dimensional Vector Space: The vector space V is said to be finite-dimensional (over
F ) if there is a finite subset Sin V such that V = L(S).

Linearly Dependent and Linearly Independent: If V is a vector space over the field F and
if v,,v,,---,v_arein V,we say that they are linearly dependent over F if there exist elements
Ay Ay Ajin Fonot all of them 0, such that A v, + AV, +---+ 4V, =0.

If the vectorsv,,Vv,, -, v, are not linearly dependent over F, they are said to be linearly
independent over F.

Basis: A subset S of a vector space V is called a basis of V if S consists of linearly
independent elements (that is, any finite number of elements in S is linearly independent) and
V =L(S).

19.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:
19.2.16. Let vy, v, ... v,, be one basis of V. T(v,), T(v,), ..., T(v,) span of V. Forif v € V

then v = T({w) for some w € V. Since T is an onto mapping. w = X7-, a;v; for some

a, € F.Nowv =T(w)=T(ZL, a,v,) =", a.T(v,). Sothat T(v,), T(v,),...T(v,) span
of V. By known results we conclude that T(v, ), T(v,),...T (v, ) are linearly independent. Let
vEV andv =21, fv,. IfT(v) =0, thenT(v) =T(XL, Bv,) = 2%, B; T(v,) = 0.
Since T(v, ), T(v,),..T(v,) are linearly independent. We have 8, = .= .. =, = 0.
Hence v = XX, f,v, = 0. T isone to one. T is an isomorphism of VV onto V.
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LESSON - 20
DUAL SPACES

OBJECTIVES:
The objectives of this lesson are to

% prove that Hom(V, W) the set of all vector space homomorphism of a vector space V
over F into a vector space W over F is a vector space over F under pointwise addition
and scalar multiplication.

prove that dim Hom(V, W) = nm, where n = dimV and m = dimW.

define the dual space V of a vector space V.

prove that dim¥ = n, if dimV = n, V is a finite dimension vector space.

define annihilator, A(W), of a subspace W of a vector space.

Prove that W is isomorphic to ¥/ A(W) and dim A(W) = dimV — dimW, where V is a

finite dimension vector space and W is a subspace of V.
s A(A(W)) = W for any subspace W of a finite dimension vector space V.

X/
X4

X/ X/
LXK )

X/
X4

L)

X/
X4

L)

STRUCTURE:

20.1. Introduction

20.2. Dual Spaces

20.3 Summary

20.4 Technical Terms

20.5 Self Assessment Questions
20.6 Suggested Readings

20.1. INTRODUCTION:

In this lesson the set Hom(V, W) of all vector space homomorphism of a vector space
V over F into a vector space W over F is realized as a vector space over F. The dual space V
of a vector space V is defined and studied. For a finite dimension vector space V it is shown
that dim¥ = dimV. The annihilator A(W) of a subspace W of a vector space is defined and its

dimension expressed interms of dimV and dimW, where V is a finite dimensional vector
space.

20.2. DUAL SPACES:

20.2.1. Theorem: Let V,UF be vector spaces over a filed F. Then the set of all homomorphism
of V into U(i.e., Hom(V,U)) is also a vector space over F.

Proof: Let f, g € Hom(V, U). Define (v)(f +g) = (v)f + (v)g, forallv e V.

Let v, v, €EVand a,,a, EF.

(i). Now (ey vy + a,v,)(f + g) = (ayvy + ayvs) f + (e, vy + ayv,)g
= ai[[uljﬂ + fx:[(”:)ﬂ + ij_[[“j_]ﬂ] + a:[(“:]ﬂ]
= fx1[[“1jﬂ + al[(“ﬂg] + a:[(“:jﬂ + cx:[(u:]g]
= a1[(”1)(f+ﬂ:]] +fx:[(1’:)[:f+ﬂ]:|

So f + g is also a homomorphism of V into U and that f + g € Hom(V, U)



Center for Distance Education 20.2 Acharya Nagarjuna University|

(ii). Now (W) [(f + g) + h] = (W) (f + g) + (v)h
=((v)f + (v)g) + (v)h
= (W)f + ((v)g + (v)h)
= (w)f +((v)(g +h))
= ()(f+ (g +h))
Therefore (f + g) + h=f + (g + h).

(iii). We have (v)0 =0, forall v € V and hence 0 € Hom(V,U).
Also we havethat f +0 =0=0+ f, forall f € Hom(U, V).

(iv). For ant f € Hom(V, U), define —f:V = U by (v)(—f) = —(v)f, forallv e V.

Now (e, vy + a,v,)(—f) = —(ayv, + ayv,)f
= —[a,(v))f +az(v;)f]
= —[a,((v)f) + ay((v,) f)]
So —f € Hom(U,V). Also we have that f + (—f) = 0= (—f) + f.

(V). Now (v)(f +g) = (w)f + (vlg = (v)g + (v)f = (v)(g + f). forall v € V.
Hence f +g =g +f.

Therefore Hom(V, U) is an abelian group under addition.

Forany a € F, f € Hom(V,U),define (v)(af) = a[(v)f], forall v € V.

(vi). Let 5.5, EF.
Now (Byvy + Bovs)(af) = a[(Byvy + Bov,)f]
= a[By(v)f + B2(v2)f]
= (aB)[(v)f] + (aB:[(v2)f]
= Byvy(af) + Byv.(af)

Therefore af is a homomorphism of ¥ into I/ and hence af € Hom(V, U)
(vii). Clearly we have that (aB8)f = a(Bf)
(viii). Cleary we have that (a + 8)f = af + Bf

(ix). Now (v)[a(f +g)] = a[(v)(f +9)]
= al[(v)f + (v)g]
= a[(v)f] +a[(v)g]
= (W) (af) + (v)(ag)
= (v)[af + ag]
Therefore a(f + g) = af + ag
Clearly if = f. Hence Hom(V, U) is a vector space over F.

20.2.2. Theorem: Let V.U be finite dimensional vector spaces over a field F of dimensions
m and n respectively. Then the dimension of the vector space Hem(V,U) is mn.

Proof: Suppose V has a basis v,,1,,...,v, consisting of n vectors and U has a basis
Uy, U, ..., U,y CONSisting of m vectors.
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Let v€V. Then v=a,v, +a,v,+ +a,v, for some a, a,, ...a, EF and this
representation of v is unique.
Letl<i<nl1<j<mDefineT,:V—Uby(v)T; =au;
Clearly T;; is a homomorphism of V into U.

HenceA={(T;| 1=i<n,1=<j<=m} S Hom(V,U).

Let S € Hom(V,U)

Let (v;)S = B uy + Bouy + -+ B, 1, for B, €F.

We have
r= (}'311?111 + BTy, +- +1‘91mT1m] + [1821?21 + B3 Top + 0 + By T:m] +-+

BTy + 82T + -+ By T ) € Hom(V, U).

Now (v;)5 = (v)B Ty + BTy + - + By Timn = Bty + Botis + -+ By,
0, ifk+i

u,j,if k=i

Since (v;)S = (v)T¥1<i<mn, S=Tandthat$ is a linear combination of

Tplsismlsj=m

So A spans Hom(V, U)

Suppose that

0= (¥ Ty +¥aTia t o+ ¥ Tim) T (71 Toy F¥eaToo + o+ ¥, Top ) + 0+

[:}'rmlTnl + me T:'zf + -+ Ezm Tnmj

forl<=i<nas(vJT; = {

That implies 0 = v;(0) = v;(¥;1 Tiy + Via Tia + = F Vi Tim) = Vaa Wi + Yo Wa + 5 + Vi Wiy
Since wy, w5, ...w,, are linearly independent, we get 0 = ¥;4 = ¥i2 = ** = ¥im

Thereforey,; =0foralll=i=n,1<j<m,

Hence A is a linearly independent set in Hom(V,U) that it is a basis. So dim
Hom(V,U) = nm

20.2.3. Corollary. Let V be a finite dimensional vector space over a field F of dimension .
Then dim(V, F) = n.

20.2.4. Definition: Let V be a vector space over a field F. Then the vector space Hom(V, F)
is called the dual space of V.

20.2.5. Lemma: Let V be a vector space of dimensionn. If 0% v €V then there is
f € Hom(V, F) such that f(v) = 0.

Proof: Suppose V is a vector space of dimension i over Fand 0 = v € V.

Then {v} is a linearly independent set of V as 0 # v

So we get a basis of V of the form v = v, v, , .17,

Now f:V — F defined by f(v = a,v, + a,v, +-+ a,v,) = a, is a homomorphism of V
into Fand f(v =v,) =1 # 0.
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20.2.6. Notation: Hom(V,F) the dual of V is denoted by ¥ and (V) =7 is called the
second dual of V.

20.2.7. Theorem: Let V be a vector space over F of dimension n. Then the canonical
mapping ¥ of V into ¥ is an isomorphism of V onto V.

Proof: Suppose V is a finite dimensional vector space of dimension 1 over a field F. we have
that ¥ and ¥ are dual and second dual of V.

Let v € V.Define Ty,: ¥V — F by T, (f) = f(V) for all ¥. Now

Ty(af, +Bf) = (afy + Bf)v = afi(v) + Bf.(v) = aT, (f) + BTy (f2)

So Ty, is a linear function on ¥ and that T, € V.

Define y: V — v by ¥(v) = T, is the canonical mapping of V into V.

T oo, (F) = af (v) + BF(v,) = aT, (f) + BT, (f) = (aT,, + BT,,)f, forall f €.
S0 Ty, +ps, = al, + BT, and that

Ylav, + fr,) = T, +pv, = @T,, T BT, = ay(v,) + By(vs)

= 10 is a homomorphism of V into V.

Suppose that (v, ) = ¥ (v,)

Now T, =T, andthatT, (f) =T, (f)forall f €V.Thatis f(v,) = f(v,) forall f €V,
Thatis f(v, —v,) = 0forall f € V.So v, —v, =0 and that v, = v,. So ¢ is one one and
that dim(V) = dim ¢(V). Butn = dim V = dim ¥ = dim ¥V . Sodim ¥ = n = dim (V)
and hence V = (V) and that ¥ is onto V.

Hence 4 is an isomorphism of V onto V.

20.2.8. Definition: Let V be a vector space over a field F and ¥ be the dual of V and W be a
subspace of V. Then the annihilator of W denoted by 4(W), is defined as
AW)={feV/f(w)=0Ywe W}

20.2.9. Theorem: Let V be a finite dimensional vector space over F and W be a subspace of
V. Then ALW} is isomorphic to W and dim A(W) = dim¥V — dimW = dimV — dim W.
Proof: Let V be a finite dimensional vector space of dimension n over F and W be a
subspace of V. Let V and W be the dual spaces of V and W respectively. Let f € V. Let f
be the restriction of f to W. So f: W — F defined by f(w) = f(w) for all w € W. Clearly
few.
Define T: V =W by T(f) = f forall f € V.
T(af,+ Bf.) = af, + B

= af, + Bf,

= aT(fi] +BT(f2)
So T is a homomorphism of V into .
KerT={f e V:T(f) =0}
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= {f EV:f= l]}
={fev:feaw)}=aw)
Let g € W. We have dimW < dimV = n.
Let dim W = m. We have a basis w,,w,,..w,, of W consisting of m vectors. This can be
extended to a basis of V of the form w, w,, ..w, , v, Vo, ... vy, Where m + k = n.
Let U be the linear span of v;,, v;5, ... v;;. Now V = WBU.
Define f:V = F by f(V) = a,w, + a,w, + -+ a, w,, + v, + Bv, + + B v,
= gla,w, + a;w, +- +a,,wy,)
Clearly f is a linear functional on V and f=g on W thatis f = g.So f eV and T(f) =f =g

and i is onto W. Hence — 2 .
Alw)

So dim V — dim(A(W)) =dim W and that dim A(W) = dim ¥ — dim W
dim A(W) =dimV — dim W
Hence the theorem.

20.2.10.Corollary: Let V be a finite dimensional vector space and W be a subspace of V.
Then A(A(W))=w

Proof: V is a finite dimensional vector space over F and W is a subspace of V over F.
Let dimV =nand dim W =m. Now n = dimV >dim W =m.
Since T: V — V define by T(v) = g,, is a canonical isomorphism, we identify g, € v with v
EV.
Notethat V ={g, : v € V}and g, : V — F is defined by g, (f) = f(v).
Let w € W and let h € A(W). Now g, (h) = h{w)
So g,. € A(A(W))and that w € A(A(W)) and that W € A(A(W)).
We have dim A(A(W)) = dimV — dim A(W)
= dimV — (dimV — dim W)
=n—(n-m)=m=dimW.
Since W € A(A(w)) and dim W = m = dim A(4A(W)).
Therefore, W = A(A(W)).

20.3 SUMMARY':

We defined dual space ¥ of a vector space V. For a finite dimension vector space V it
is shown that dimV = dimV. The annihilator A(W) of a subspace W of a vector space V is
expressed interms of dimV and dimW and some results on them are given.

20.4 TECHNICAL TERMS:

e Hom(V, W), V, W are vector spaces over a field F.
e A(W), annihilator of a subspace W of a vector space V.
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20.5 SELF ASSESSMENT QUESTION:
1. prove that A(S) = A(L(S)), S is a subset of a vector space V and L(S) is the linear span of
S.

20.6 SUGGESTED READINGS:

1) L.N. Herstein, ‘Topics in Algebra’, Second Edition, John Wiley & Sons, 1999.

2) P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul. "Basic Abstract Algebra", Second Edition,
Cambridge Press, 1995.

3) Thomas W. Hungerford, ‘Algebra’, Springer - Verlag, New York, 1974.

4) Serge Lang, ‘Algebra’, Revised Third Edition, Springer-Verlag, New York, 2002.

-Dr. Noorbhasha Rafi
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